• Title/Summary/Keyword: Pilot point

Search Result 254, Processing Time 0.032 seconds

Accuracy of the Point-Based Image Registration Method in Integrating Radiographic and Optical Scan Images: A Pilot Study

  • Mai, Hai Yen;Lee, Du-Hyeong
    • Journal of Korean Dental Science
    • /
    • v.13 no.1
    • /
    • pp.28-34
    • /
    • 2020
  • Purpose: The purpose of this study was to investigate the influence of different implant computer software on the accuracy of image registration between radiographic and optical scan data. Materials and Methods: Cone-beam computed tomography and optical scan data of a partially edentulous jaw were collected and transferred to three different computer softwares: Blue Sky Plan (Blue Sky Bio), Implant Studio (3M Shape), and Geomagic DesignX (3D systems). In each software, the two image sets were aligned using a point-based automatic image registration algorithm. Image matching error was evaluated by measuring the linear discrepancies between the two images at the anterior and posterior area in the direction of the x-, y-, and z-axes. Kruskal-Wallis test and a post hoc Mann-Whitney U-test with Bonferroni correction were used for statistical analyses. The significance level was set at 0.05. Result: Overall discrepancy values ranged from 0.08 to 0.30 ㎛. The image registration accuracy among the software was significantly different in the x- and z-axes (P=0.009 and <0.001, respectively), but not different in the y-axis (P=0.064). Conclusion: The image registration accuracy performed by a point-based automatic image matching could be different depending on the computer software used.

The Experimental Study of the Heat Flux and Energy Consumption on Variable Flow Rate for Secondary Side of DHS (지역난방 2차측 유량변화가 내부 열유속 및 에너지소비량에 미치는 영향에 관한 실험적 연구)

  • Hong, Seong-Ki;Cho, Sung-Hwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.5
    • /
    • pp.247-253
    • /
    • 2015
  • The presented work demonstrates the effects of flow rate on the secondary side of DHS (District Heating System). Increasing flow rate at the secondary side of DHS decreases energy consumption and time to reach the set-point of the heated room while increasing heat flux on the floor in the heating space. When flow rate increases, the overall heat transfer rate of radiant floor also increases. However, the results also show overall heat transfer rateto not increased linearly and thus the existence of an optimal flow rate for the secondary side of DHS. Control of the radiant floor with hot water may be more effectively accomplished with a combined control strategy that includes heat flux and a temperature set-point. This experimental analysis has been performed using a lab-scaled DHS pilot plant located at Jeonju University in Korea.

A Micro Solar Energy Harvesting Circuit with MPPT Control (MPPT 제어기능을 갖는 마이크로 빛에너지 하베스팅 회로)

  • Yoon, Eun-Jung;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.105-113
    • /
    • 2013
  • In this paper a micro solar energy harvesting system with MPPT(Maximum Power Point Tracking) control using a miniature PV(photovoltaic) cell of which the output is less than 0.5V is proposed. The MPPT control is implemented using linear relationship between the open-circuit voltage of a PV cell and its MPP(Maximum Power Point) voltage such that a pilot PV cell can track the MPP of the main PV cell in real time. The proposed circuit is designed in 0.18um CMOS process. The designed chip area is $900um{\times}1370um$ including a load charge pump and pads. Measured results show that the designed system can track the MPP voltage changes with variations of light intensity. The designed circuit with MPPT control delivers MPP voltages to load even though the load is heavy such that it can supply more power when the MPPT control is applied. The proposed circuit does not require any precharged battery resulting in more suitability for miniaturized self-powered systems compared to the existing works.

Best Buffer Width of Riparian Buffer Zone using a Pilot with Different Plant Species for Reduction of Non-point Pollutant Loading (비점오염저감을 위한 수변완충지대의 적정 설계)

  • Kim, Sung-Won;Choi, I-Song;Oh, Jong-Min
    • Journal of Environmental Impact Assessment
    • /
    • v.17 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • Non-point pollution is caused by many diffusive sources, unlike a point pollution derived from industrial wastewater treatment plants or sewage treatment plants. Runoff of non-point pollutants is originated from rainfall or thawing in short period of time moving over and through the a ground surface. They cause ill effect on the quality of neighboring aquatic environment. To prevent effectively the wash off from non-point pollutant, it should be immediately reduced at the source or be treated after gathering of runoff water. This study has been carried out for the best width of riparian buffer zone. So we implemented the experiment in terms of its depth, width and kind of vegetations and calculated the reduction of pollutants loading. The experimental zone encompasses the watershed of Namhan River (Kyunggido Yangpyunggun Byungsanri). The region was divided into 5 land cover sectors : grass, reed, pussy willow, mixed(grass+pussy willow) and natural zone to compare effectiveness of vegetation. Water samples from four points have been collected in different depths. And the pollutant removal efficiency by sectors with different plant species was yielded through influent with one of each sample. And we obtained the correlation between the width of riparian buffer zone and the removal efficiency of pollutants. Using correlation result, the width of riparian buffer zones which needs to improve the water quality of river could be derived.

Determination of Set Point of Streaming Current for Optimum Coagulation (최적 응집을 위한 Streaming Current의 기준값 설정에 관한 연구)

  • Yu, Myong-Jin;Jang, Mi-Jeong;Park, Gui-Su
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.1
    • /
    • pp.34-41
    • /
    • 2006
  • The objectives of this study were to investigate the affecting factors on streaming current(SC) and to evaluate set point(SP). For the study, a pilot scale apparatus with a capacity of 12 L/min was operated at Guui water intake of Seoul. SC was monitored with varying poly aluminium chlorides(PACs) dose and water quality parameters like conductivity, turbidity, temperature, and pH. The removal efficiencies were evaluated in terms of turbidity and dissolved organic carbon(DOC) with varying coagulation conditions. The effects of affecting factors on SC and SP were also estimated. According to the result observed from the variation of SC with water quality parameters during the experimental period, tendencies of SC and conductivity were very similar, and SC and conductivity had a strong linear relation. At the optimum condition of coagulation, SP decreased as the rainy season changed to the dry season, during the experimental period. Especially, in condition of low turbidity, conductivity had relatively more effect on SC than turbidity. As conductivity increased, SP decreased and coagulant dose per unit increase of SC gradually increased. In view of the results so far obtained, it may be possible to determine the SP range considering the real time variation of water quality, especially conductivity.

Memory Reduction of IFFT Using Combined Integer Mapping for OFDM Transmitters (CIM(Combined Integer Mapping)을 이용한 OFDM 송신기의 IFFT 메모리 감소)

  • Lee, Jae-Kyung;Jang, In-Gul;Chung, Jin-Gyun;Lee, Chul-Dong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.10
    • /
    • pp.36-42
    • /
    • 2010
  • FFT(Fast Fourier Transform) processor is one of the key components in the implementation of OFDM systems for many wireless standards such as IEEE 802.22. To improve the performances of FFT processors, various studies have been carried out to reduce the complexities of multipliers, memory interface, control schemes and so on. While the number of FFT stages increases logarithmically $log_2N$) as the FFT point-size (N) increases, the number of required registers (or, memories) increases linearly. In large point-size FFT designs, the registers occupy more than 70% of the chip area. In this paper, to reduce the memory size of IFFT for OFDM transmitters, we propose a new IFFT design method based on a combined mapping of modulated data, pilot and null signals. The proposed method focuses on reducing the sizes of the registers in the first two stages of the IFFT architectures since the first two stages require 75% of the total registers. By simulations of 2048-point IFFT design for cognitive radio systems, it is shown that the proposed IFFT design method achieves more than 38.5% area reduction compared with previous IFFT designs.

The Pattern Draft Factors Affecting the Silhouette of Gored Skirts in Virtual Clothing Simulation (가상 착의 시 고어드스커트의 패턴 제도 요인이 실루엣에 미치는 영향)

  • Choi, Soon Hee;Kim, Yeosook
    • The Korean Journal of Community Living Science
    • /
    • v.24 no.3
    • /
    • pp.399-409
    • /
    • 2013
  • The purpose of this study is to compare how the number of panels, the amount of flare and the flare starting point affect the silhouette of the gored skirt. This study consisted of (1) creation of 3D body representations (2) comparison of silhouette between 3D virtual gored skirt and actual gored skirt by pilot experiment (3) pattern drafting of twenty-seven different gored skirts for 3D body representations (4) a computer simulation of twenty-seven different gored skirts for visualization and assessment (5) visual inspection of twenty-seven different 3D virtual gored skirts (6) comparison of ham shapes and measurements for the node and size analysis. A visual inspection of twenty-seven different 3D virtual gored skirts showed clear differences by the amount of flare and the flare starting point ; however, there was notably less difference in the width of ham among six-piece, eight-piece and ten-piece panels. This demonstrated that there was less influence on the number of panels than the amount of flare width of ham and extent of ham for the 3D virtual gored skirt.

Designing ESP Curriculum for EFL Learners at College of Navigation

  • Choi, Seung-Hee
    • Journal of Navigation and Port Research
    • /
    • v.38 no.2
    • /
    • pp.127-134
    • /
    • 2014
  • This paper aims to identify what is needed to improve the English for Specific Purposes(ESP) curriculum for English as a Foreign Language(EFL) college learners at navigation school. Different needs from learners and experienced professionals are identified through diversified methods, and the findings from these are analysed and consolidated from a balanced point of view. For this purpose, putting learners at the centre of analysis, identifying their subjective and objective needs serves as a point of departure in formulating the curriculum. Then, the target situation is analysed according to the short-term aim of getting a job, followed by long-term needs for successfully fulfilling future duties as a pilot. Based on findings, it is suggested that ESP curriculum for learners in navigation studies should be focused on the successful language performance of their actual duties and tasks to be given in the future working situations, rather than on immediate needs for getting a job. In particular, special attention needs to be paid to enhancing learners' productive language competences through a series of hands-on trainings and a wide range of extra-curricular activities, specifically for a higher command of oral communication. For this, not only ESP, curriculum for EGP(English for General Purposes) should be systematically structured as ESP-oriented EGP, and naturally move onto areas of ESP in a coherent manner.

A Study on the Maneuvering Area of Ship in Moving at Single Point Mooring (SPM 이안 선박의 조종영역에 관한 연구)

  • Kim, Jin-Soo
    • Journal of Korea Ship Safrty Technology Authority
    • /
    • s.23
    • /
    • pp.78-97
    • /
    • 2007
  • SPM, which is an abbreviation of Single Point Mooring, also called as SBM(Single Buoy Mooring), is a special buoy besides the quays of the harbor for mooring ships, and is normally a 3m wide cone or cylinder shaped steel drum fixed underwater so it won't move, and is used for mooring cargo-work at outer port by laid-up ships and large crude oil carrier. The work of VLCC SPM mainly is accomplished on the open sea. On the open sea as a result of meteorological condition and the ocean wave influence, When the weather condition is get bed, peremptorily moving to the safety place, because of the gale and the billow, almost happened frequently, the pilot is unable to go on board and the tug is also unable to be used Now because of the bad weather the VLCC SPM moving to the other safety place frequently happened in the ulsan port. the construction of new harbor, it constructed many break water around SPM. So that it is necessary to propose the new standard about how to maneuvering area actually. The standard for handling ranges of the SPM operations was tested and verified by a simulation.. So that it is necessary to propose the new standard about how to maneuvering area actually.

  • PDF

Experiments of RTK based Precision Landing for Rotary Wing Drone (RTK를 이용한 회전익 드론 정밀 착륙 실험)

  • Young-Kyu Kim;Jin-Woung Jang;Jong-Hee Lee;Jong-Ho Yoo;Seungh Hyun Paik;Dae-Nyeon Kim
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.2
    • /
    • pp.75-80
    • /
    • 2023
  • Unmanned drone stations for automatic charging have been developed in order to overcome the flying time limitation of rotary wing drones. Since the drone stations is an unmanned operating system, each of the drones will be required to have a high degree of landing accuracy. Drone precision landing has been mainly studied depended on image processing technologies, but the image processing systems make several problems, such as the mission weight, the drone cost, and the development complexity increases, and the flight time decrease. Thus, this paper researched accuracy of precision landing based on RTK (real time kinetics) for rotary wing drones. For the experiments of RTK based precision landing, a drone repeatedly performed three missions. The survey accuracies of the RTK about missions respectively were set as 0.3, 0.2, and 0.1 meters. Each mission has one take-off point, two way-points and one landing-point, and was repeated ten times. The experiment results revealed landing error distance means of around 0.258, 0.12 and 0.057 meters on each of RTK setting.