• Title/Summary/Keyword: Pilot operated relief valve

Search Result 8, Processing Time 0.022 seconds

Development of the Rack-Bar Type Sluice Gate Applying the Hydrostatic Transmission (정유압식 래크바형 수문권양기의 개발)

  • Lee, Seong-Rae
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.4
    • /
    • pp.15-22
    • /
    • 2010
  • The typical hydraulic hoisting system of the rack-bar type sluice gate is composed of a hydraulic supply unit using an uni-directional pump, a direction control valve, a hydraulic motor, a counter balance valve, and flow control valves. Here, the hydrostatic transmission is applied to the hoisting system of rack-bar type sluice gate to simplify the operation of gate such that the upward and downward direction of gate is simply controlled by the direction of pump rotation. The new hydraulic hoisting system is composed of a bi-directional pump, a hydraulic motor, a counter balance valve, two check valves, two pilot-operated check valves, two relief valves and a shuttle valve. The characteristics of a suggested system are analyzed by computer simulations and experiments.

  • PDF

Development of the Rack-Bar Type Sluice Gate Applying the Hydrostatic Transmission (정유압식 래크바형 수문권양기의 개발)

  • Lee, Seong-Rae
    • 유공압시스템학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.86-92
    • /
    • 2010
  • The typical hydraulic hoisting system of the rack-bar type sluice gate is composed of a hydraulic supply unit using an uni-directional pump, a direction control valve, a hydraulic motor, a counter balance valve, and flow control valves. Here, the hydrostatic transmission is applied to the hoisting system of rack-bar type sluice gate to simplify the operation of gate such that the upward and downward direction of gate is simply controlled by the direction of pump rotation. The new hydraulic hoisting system is composed of a bi-directional pump, a hydraulic motor, a counter balance valve, two check valves, two pilot-operated check valves, two relief valves and a shuttle valve. The characteristics of a suggested system are analyzed by computer simulations and experiments.

  • PDF

Computer Simulation Study of the Hydrostatic Transmission Applied to the Rack-Bar Type Sluice Gate (래크바형 수문권양기에 적용된 정유압장치의 컴퓨터 시뮬레이션에 의한 작동특성 연구)

  • Lee, S.R.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.6 no.2
    • /
    • pp.14-21
    • /
    • 2009
  • The typical hydraulic hoisting system of the rack-bar type sluice gate is composed of a hydraulic supply unit using an uni-directional pump, a direction control valve, a hydraulic motor, a counter balance valve, and flow control valves. Here, the hydrostatic transmission is applied to the hoisting system of rack-bar type sluice gate to simplify the operation of gate such that the upward and downward direction of gate is simply controlled by the direction of pump rotation. The new hydraulic hoisting system is composed of a bi-directional pump, a hydraulic motor, two counter balance valves, two check valves, two pilot-operated check valves, two relief valves and a shuttle valve. The characteristics of a suggested system are analyzed by computer simulations.

  • PDF

A Numerical Study on the IRWST Pool Temperature Distributionin in APR1400 (APR1400 IRWST Pool 온도분포 해석)

  • Kang, Hyung-Seok;Bae, Yoon-Y.;Park, Jong-Kyung
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.813-820
    • /
    • 2001
  • The Safety depressurization System(SDS) of KNGR prevents RCS from overpressurization by discharging high pressure and temperature coolant through the I-sparger into the IRWST during an accident. If IRWST water temperature rise locally, around the sparger, beyond $200_{\circ}$2000 F by the discharged coolant, unstable steam condensation can cause large pressure load on the IRWST wall. To investigate whether this condition can be avoided for the design basis event IOPOSRV(Inadvertent Opening of one Pilot Operated Safety Relief Valve), the flow and temperature distribution of water in the IRWST is calculated by using CFX 4.3 computational fluid dynamic code. According to the results, since pool water temperature does not exceeds temperature limit within 50 seconds after the opening of one POSRV, it can be assured that the integrity of IRWST wall is maintained.

  • PDF

THE DESIGN FEATURES OF THE ADVANCED POWER REACTOR 1400

  • Lee, Sang-Seob;Kim, Sung-Hwan;Suh, Kune-Yull
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.995-1004
    • /
    • 2009
  • The Advanced Power Reactor 1400 (APR1400) is an evolutionary advanced light water reactor (ALWR) based on the Optimized Power Reactor 1000 (OPR1000), which is in operation in Korea. The APR1400 incorporates a variety of engineering improvements and operational experience to enhance safety, economics, and reliability. The advanced design features and improvements of the APR1400 design include a pilot operated safety relief valve (POSRV), a four-train safety injection system with direct vessel injection (DVI), a fluidic device (FD) in the safety injection tank, an in-containment refueling water storage tank (IRWST), an external reactor vessel cooling system, and an integrated head assembly (IHA). Development of the APR1400 started in 1992 and continued for ten years. The APR1400 design received design certification from the Korean nuclear regulatory body in May of2002. Currently, two construction projects for the APR1400 are in progress in Korea.

DEVELOPMENT OF AN OPERATION STRATEGY FOR A HYBRID SAFETY INJECTION TANK WITH AN ACTIVE SYSTEM

  • JEON, IN SEOP;KANG, HYUN GOOK
    • Nuclear Engineering and Technology
    • /
    • v.47 no.4
    • /
    • pp.443-453
    • /
    • 2015
  • A hybrid safety injection tank (H-SIT) can enhance the capability of an advanced power reactor plus (APR+) during a station black out (SBO) that is accompanied by a severe accident. It may a useful alternative to an electric motor. The operations strategy of the H-SIT has to be investigated to achieve maximum utilization of its function. In this study, the master logic diagram (i.e., an analysis for identifying the differences between an H-SIT and a safety injection pump) and an accident case classification were used to determine the parameters of the H-SIT operation. The conditions that require the use of an H-SIT were determined using a decision-making process. The proper timing for using an H-SIT was also analyzed by using the Multi-dimensional Analysis of Reactor Safety (MARS) 1.3 code (Korea Atomic Energy Research Institute, Daejeon, South Korea). The operation strategy analysis indicates that a H-SIT can mitigate five types of failure: (1) failure of the safety injection pump, (2) failure of the passive auxiliary feedwater system, (3) failure of the depressurization system, (4) failure of the shutdown cooling pump (SCP), and (5) failure of the recirculation system. The results of the MARS code demonstrate that the time allowed for recovery can be extended when using an H-SIT, compared with the same situation in which an H-SIT is not used. Based on the results, the use of an H-SIT is recommended, especially after the pilot-operated safety relief valve (POSRV) is opened.

Study on the Safety Analysis on the Cooling Performance of Hybrid SIT under the Station Blackout Accident (발전소 정전사고 시 Hybrid SIT의 냉각성능 평가를 위한 안전해석에 관한 연구)

  • Ryu, Sung Uk;Kim, Jae Min;Kim, Myoung Joon;Jeon, Woo Jin;Park, Hyun-Sik;Yi, Sung-Jae
    • Journal of Energy Engineering
    • /
    • v.26 no.3
    • /
    • pp.64-70
    • /
    • 2017
  • The concept of Hybrid Safety Injection Tank (Hybrid SIT) proposed by the Korea Atomic Energy Research Institute (KAERI) has been introduced for the purpose of application to the Advanced Power Reactor Plus (APR+). In this study, the SBO situation of the APR+ was analyzed by using the MARS-KS code in order to evaluate whether the operation of the Hybrid SIT has an effect on the cooling performance of the Reactor Coolant System (RCS). According to the analysis, when the actuation valve on the pressure balancing line (PBL) is opened, the Hybrid SIT's pressure rises rapidly, forming equilibrium with the RCS pressure; subsequently, a flow is injected from the Hybrid SIT into the reactor vessel through the direct vessel injection (DVI) line. The analysis showed that it is possible to keep the core temperature below melting temperature during the operation of a Hybrid SIT.