• Title/Summary/Keyword: Pilot Spray

Search Result 43, Processing Time 0.023 seconds

Comparison of Pilot Spray Characteristics of HP Diesel Injectors with Different Driving Method for CRDi System (II) (커먼레일 직접분사(CRDi)용 고압 디젤인젝터의 구동방식별 Pilot Spray 특성비교(II) - 솔레노이드 및 피에조 구동방식 비교분석 -)

  • Lee, Jin-Wook
    • Journal of ILASS-Korea
    • /
    • v.15 no.2
    • /
    • pp.67-73
    • /
    • 2010
  • The capability of pilot injection with small fuel quantity at all engine operating conditions is one of the main feature of the common rail direct injection system. The purpose of the pilot injection is to lower the engine noise and to reduce the NOx emissions. This study describes the pilot spray structure characteristics of the common-rail diesel injectors with different electric driving characteristics, including solenoid-driven and piezo-driven type. Namely three common-rail injectors with different electric current wave were investigated in this study. The pilot spray characteristics such as spray speed, spray tip penetration, and spray angle were obtained by spray images, which is measured by the back diffusion light illumination method with optical system for high-speed temporal photography. As this research results, it was found that pilot injection of common-rail system was effected by rate of injection with different electrical characteristic for injector driving.

Comparison of Pilot Spray Characteristics of HP Diesel Injectors with Different Driving Method for CRDi System (I) (커먼레일 직접분사(CRDi)용 고압 디젤인젝터의 구동방식별 Pilot Spray 특성비교 (I) - 실제 직접분사식 디젤엔진에서의 사전분사 특성 분석 -)

  • Lee, Jin-Wook
    • Journal of ILASS-Korea
    • /
    • v.15 no.1
    • /
    • pp.25-30
    • /
    • 2010
  • The capability of pilot injection with small fuel quantity at all engine operating conditions is one of the main feature of the common rail direct injection system. The purpose of the pilot injection is to lower the engine noise and to reduce the NOx emissions. This study describes the pilot spray structure characteristics of the common-rail diesel injectors with different electric driving characteristics, including solenoid-driven and piezo-driven type. Namely three common-rail injectors with different electric current wave were investigated in this study. The pilot spray characteristics such as spray speed, spray tip penetration, and spray angle were obtained by spray images, which is measured by the back diffusion light illumination method with optical system for high-speed temporal photography. As this research results, it was found that pilot injection of common-rail system was effected by rate of injection with different electrical characteristic for driving the injector.

Analysis of Pilot Spray Characteristics of Different Driven Injectors for High Pressure Diesel Engine (다른 구동방식을 갖는 고압 디젤 엔진용 인젝터의 Pilot 분무 특성 해석)

  • Bae, J.W.;Kim, H.N.;Lee, J.W.;Kang, K.Y.;Ryu, J.I.
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.251-256
    • /
    • 2003
  • The capability of pilot injection with small fuel quantity at all engine operating conditions is one of the main feature of the common rail system. The purpose of the pilot injection is to lower the engine noise and to reduce the NOx emissions. This study describes the pilot spray structure characteristics of the common-rail diesel injectors, solenoid-driven and piezo-driven type, with different electric driving characteristics So, three common-rail injectors with different electric current wave were used in this study. The pilot spray characteristics such as spray speed, spray tip penetration, and spray angle were obtained by spray images, which is measured by the back diffusion light illumination method with optical system for high-speed temporal photography. Also the CFD analysis was carried out for fuel behavior under high pressure in between needle and nozzle of solenoid-driven injector to know the condition of initial injection at experiment test. It was found that pilot injection of common-rail system was effected by rate of injection and temperature of injected fuel and electrical characteristic of the driven injector.

  • PDF

EFFECTS OF A SPLIT INJECTION ON SPRAY CHARACTERISTICS FOR A COMMON-RAIL TYPE DIESEL INJECTION SYSTEM

  • PARK S. W.;SUH H. K.;LEE C. S.
    • International Journal of Automotive Technology
    • /
    • v.6 no.4
    • /
    • pp.315-322
    • /
    • 2005
  • This work was performed to investigate the effect of a split injection on spray characteristics of fuel sprays injected from a common rail system. In order to analyze the spray behavior and atomization characteristics at various rates of split injections, the injection durations of pilot and main injections were varied in experiments. The injection rate of split injection was measured to study the effect of the pilot injection on the main injection. By using a Nd:YAG laser and an ICCD camera, the development of the injected spray was visualized at various elapsed time from the start of injection. The microscopic characteristics such as SMD and axial velocity were analyzed by using a phase Doppler particle analyzer system. The results indicate that the ambient gas flow generated by the pilot injection affects the behavior of main spray, whereas the effect of pressure variation on the main spray is little. The spray tip penetration of a main spray with pilot injection is longer than that of the single injection by the effect of ambient gas flow. Also the main spray produces larger droplets than the pilot spray due to a small relative velocity between the droplets and ambient gas.

Effect of Injection Hole and Needle-driven Characteristics on Pilot Spray in High Pressure Injector with Common-rail System (커먼레일 고압분사용 인젝터의 분공수 및 니들구동특성이 Pilot 분무에 미치는 영향)

  • Lee, Jin-Wook;Bae, Jang-Woong;Kim, Ha-Nul;Kang, Kern-Yong;Min, Kyung-Duk
    • Journal of ILASS-Korea
    • /
    • v.9 no.1
    • /
    • pp.8-14
    • /
    • 2004
  • future exhaust emission limits for diesel-driven passenger cars will force the automotive company to significantly develop of the new technologies of diesel engine respectively of the drive assemblies. As we know, the contributions of soot and nitrogen oxide is the main problems in diesel engine. Recently, as a result, the pilot injection of common-rail fuel injection system recognizes an alternative function to solve an environmental problem. This study describes the effect of the nozzle structure and driven characteristic of injector on pilot injection fur a passenger car common-rail system. The pilot spray structure such as spray tip penetration, spray speed and spray angle were obtained by high speed images, which is measured by the Mie scattering method with optical system fur high-speed temporal photography. Also the CFD analysis was carried out for fuel behavior under high pressure in between needle and nozzle of injector for common-rail system to know the condition of initial injection at experiment test. It was found that solenoid-driven injector with 5-hole was faster than 6-hole injector in spray speed at same conditions and piezo-driven injector showed faster response than solenoid injector.

  • PDF

Pilot Spray Characteristics of Piezo type Injectors for High Pressure Injection (고압 분사용 Piezo 인젝터의 Pilot 분무특성)

  • Bae, J.W.;Kim, H.N.;Lee, J.W.;Kang, K.Y.;Ryu, J.I.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2076-2081
    • /
    • 2004
  • Future exhaust gas limits for diesel-driven passenger cars will force the automotive industry to significantly improve the performance of engine. Since modern common-rail injection systems deliver more degrees of freedom referring to the injection process, again the optimization of the injection process could offer a possibility to meet the exhaust gas limits. This study describes the characteristic the pilot spray structure of piezo-driven injector for a passenger car common-rail system to be applicable multiple injection caused by fast response rather than solenoid-driven injector. The piezo-driven injector is prototype injector with same needle chamber of solenoid injector and the solenoid-driven one is commercial injector. The pilot spray characteristic such as spray tip penetration, spray speed, spray angle were obtained by spray images, which is measured by the Mie scattering method with optical system for high-speed temporal photography. It was found that piezo-driven injector effected electric change as important factor and showed faster response than solenoid-driven injector.

  • PDF

Spray Characteristics of a Pilot Nozzle in a Counter-Swirl Type Gas Turbine Combustor (가스터빈 연소기용 대향류 선회기의 분무 특성)

  • Ko, Y.S.;Kim, M.H.;Kim, D.J.;Min, D.K.;Chung, S.H.
    • Journal of ILASS-Korea
    • /
    • v.1 no.2
    • /
    • pp.42-49
    • /
    • 1996
  • The structure of sprays from a simplex type pilot nozzle atomizer is studied experimentally by measuring velocities, Sauter mean diameter, and number density. Interaction of the spray with gas-phase flow field generated from a 1 MW range industrial gas turbine combustor adopt ing a counter-swirler is investigated. Various spray behaviors are reported. Especially interest ing characteristics are the tangential motion of the spray and of the spray with swirl interaction. It shows a Rankine combined vortex type of velocity characteristics, having linear velocity profile inside the inner core whole small particles exist and rapidly decreasing velocity profiles outside. Interacting spray has relatively uniform number density profiles compared to the nozzle spray itself.

  • PDF

Spray-atomization Characteristics of Biodiesel Fuel with Multiple Injection (다단분사를 적용한 바이오디젤 연료의 분무 미립화 특성)

  • Park, Su-Han;Kim, Hyung-Jun;Kim, Se-Hun;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.40-47
    • /
    • 2010
  • This study deals with the investigation about the effect of the pilot and split injection strategies on the spray-atomization characteristics of biodiesel fuel derived from a soybean oil. Experimental results were compared with the calculation results obtained from the numerical analysis. Fuel properties of biodiesel according to the variation of the fuel temperature were inserted to the fuel library in the KIVA code. The amount of fuel injection is divided into equal mass for each split and main injection. In this work, the pilot injection strategy can be achieved by the amount of fuel injection shortly before the start of the main injection. A spray tip penetration, radial distance and spray area were measured for the analysis of macroscopic spray characteristics. In addition, the local and overall droplet size distribution were calculated by using KIVA-3V code to study the effect of split and pilot injection on the atomization performance under high ambient pressure. From these studies, the experimental results showed the multiple injection induced the decrease of the spray tip penetration due to the reduction and division of the spray momentum compared to single injection. In the atomization performance, the droplet size increased in the case of the multiple injection a little. Moreover, the SMD slightly increased as the fuel droplets goes through the axial direction. The spray behavior of numerical results were well predicted the experimental multiple spray characteristics of biodiesel fuel.

A Comparative Study Between CFD and 0-D Simulation of Diesel Sprays with Several Fuel Injection Patterns Using Gas Jet Spray Model (가스제트 분무 모델을 이용한 다양한 분사 패턴의 디젤 분무에 대한 CFD 및 0-D 시뮬레이션 비교 연구)

  • Lee, Choong-Hoon
    • Journal of ILASS-Korea
    • /
    • v.17 no.2
    • /
    • pp.77-85
    • /
    • 2012
  • The CFD simulation of diesel spray tip penetrations were compared with 0-D simulation for experimental data obtained with common rail injection system. The simulated four injection patterns include single, pilot and split injections. The CFD simulation of the spray penetration over these injection patterns was performed using the KIVA-3V code, which was implemented with both the standard KIVA spray and original gas jet sub-models. 0-D simulation of the spray tip penetration with time-varying injection profiles was formulated based on the effective injection velocity concept as an extension of steady gas jet theory. Both the CFD simulation of the spray tip penetration with the standard KIVA spray model and 0-D simulation matched better with the experimental data than the results of the gas jet model for the entire fuel injection patterns.

Model Development of Spray Dryer Absorber FGD Process (Spray Dryer Absorber 배연탈황공정의 모델 개발)

  • Jang, Sun-Hee;Oh, Eui-Kyung;Lee, Hyung-Keun;Kim, Sun-Geon
    • Clean Technology
    • /
    • v.2 no.1
    • /
    • pp.80-95
    • /
    • 1996
  • A mathematical model has been developed for simulating the spray dryer absorber (SDA) used in semi-dry flue gas desulfurization process. Fundamental equations include the component mass and heat balances in both gas and droplet phases and the equation of motion for a single droplet. The model developed described the pilot-plant data much better than the existing SPRAYMOD-M model. The effect of the process variables, whose values were chosen within the operation limits of the actual pilot plants, on % $SO_2$ removal or conversion of the sorbent were calculated, and discussed in terms of $SO_2$ absorption rate, the residence time of flue gas, the velocity and drying time of droplets. Finally, the % $SO_2$ removal was calculated with two independent process variables and the results were shown on three-dimensional or two-dimensional diagrams with the lines of constant % $SO_2$ removal, so that they can be easily applied to preliminary design of the SDA.

  • PDF