• Title/Summary/Keyword: Pillar stability

Search Result 86, Processing Time 0.022 seconds

Failure pattern of large-scale goaf collapse and a controlled roof caving method used in gypsum mine

  • Chen, Lu;Zhou, Zilong;Zang, Chuanwei;Zeng, Ling;Zhao, Yuan
    • Geomechanics and Engineering
    • /
    • v.18 no.4
    • /
    • pp.449-457
    • /
    • 2019
  • Physical model tests were first performed to investigate the failure pattern of multiple pillar-roof support system. It was observed in the physical model tests, pillars were design with the same mechanical parameters in model #1, cracking occurred simultaneously in panel pillars and the roof above barrier pillars. When pillars 2 to 5 lost bearing capacity, collapse of the roof supported by those pillars occurred. Physical model #2 was design with a relatively weaker pillar (pillar 3) among six pillars. It was found that the whole pillar-roof system was divided into two independent systems by a roof crack, and two pillars collapse and roof subsidence events occurred during the loading process, the first failure event was induced by the pillars failure, and the second was caused by the roof crack. Then, for a multiple pillar-roof support system, three types of failure patterns were analysed based on the condition of pillar and roof. It can be concluded that any failure of a bearing component would cause a subsidence event. However, the barrier pillar could bear the transferred load during the stress redistribution process, mitigating the propagation of collapse or cutting the roof to insulate the collapse area. Importantly, some effective methods were suggested to decrease the risk of catastrophic collapse, and the deep-hole-blasting was employed to improve the stability of the pillar and roof support system in a room and pillar mine.

Analysis on the Deformation Characteristics of a Pillar between Large Caverns by Burton-Bandis Rock Joint Model (Barton-Bandis 절리 모델에 의한 지하대공동 암주의 변형 특성 연구)

  • 강추원;임한욱;김치환
    • Tunnel and Underground Space
    • /
    • v.11 no.2
    • /
    • pp.109-119
    • /
    • 2001
  • Up to now single large cavern was excavated for each undergroud hydraulic powerhouse in Korea. But the Yangyang underground hydraulic powerhouse consists of two large caverns; a powerhouse cavern and main transformer cavern. In this carte, the structural stability of the caverns, especially the rock pillar formed between two large caverns, should be guaranteed to be sound to make the caverns permanently sustainable. In this research, the Distinct Element Method(DEM) was used to analyze the structural stability of two caverns and the rock pillar. The Barton-Bandis joint model was used as a constitutive model. The moot significant parameters such as in-site stress, JRC of in-situ natural joints, and spatial distribution characteristics of discontinuities were acquired through field investigation. In addition, two different cases; 1) with no support system and 2) with a support system, were analysed to optimize a support system and to investigate reinforcing effects of a support system. The results of analysis horizontal displacement and joint shear displacement proved to be reduced with the support system. The relaxed zone in the rock pilar also proved to be reduced in conjunction with the support system. Having a support system in place provided the fact that the non zero minimum principal stresses were still acting in the rock pillar so that the pillar was not under uniaxial compressive condition but under triaxial compressive condition. The structural stability f an approximately 36 m wide rock pillar between two large caverns was assured with the appropriate support system.

  • PDF

Tunnel pillar reinforcement effect using PC stranded wire and groutings (PC강연선 및 그라우팅을 이용한 터널 필라부 보강효과)

  • Yeon-Deok Kim;Soo-Jin Lee;Pyung-Woo Lee;Hong-Su Yun;Sang-Hwan Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.2
    • /
    • pp.43-63
    • /
    • 2023
  • With the concentration of the population in the city center and the saturation of the structures on the ground, the development of the underground structures becomes important and the construction of an adjoining tunnel that can reduce the overall problems is respected. In addition, it is necessary to apply the reinforcement construction method for the pillar part of the adjacent tunnel that can secure stability, economy and workability of the site. In this study, the tunnel pillar reinforcement method using prestress and grouting was reviewed. There are various reinforcement methods that can compensate for the problems of the side tunnel, but as the tunnel pillar construction method using prestress and grouting is judged to be excellent in field applicability, stability and economic feasibility, theoretical and numerical analysis of the actual behavior mechanism are conducted. Numerical analysis is divided into PC stranded wire + steel pipe reinforcement grouting + prestress (Case 1), pillar part tie bolt reinforcement (Case 2), pillar part non-reinforcement (Case 3) under the same ground conditions, and the maximum value of the celling displacement, internal displacement, and member force, the stability was confirmed. Through numerical analysis, it was confirmed that Case 1 which reinforced the PC stranded wire, was the best construction method and if it is verified and supplemented through field experiments later, it will be possible to derive superior results in terms of displacement control and member force than the currently applied reinforcement method was judged.

Analysis on underwater stability of the octagonal pillar type fish cage and mooring system (팔각기둥형 가두리 시스템의 수중 안정성 분석)

  • Yang, Yong-Su;Park, Seong-Wook;Lee, Kyounghoon;Lee, Dong-Gil;Jeong, Seong-Jae;Bae, Jaehyun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.2
    • /
    • pp.193-201
    • /
    • 2014
  • The sea cage in marine aquaculture might be varied such as on the stability and shape in the open sea by environmental factors. To evaluate the stability of net cage structures in the open sea, the physical and numerical modeling techniques were applied and compared with field observations. This study was carried out to analyse the stability and the volume loss which would have an effect on the fish swimming behavior in the octagonal pillar type fish cage under the open sea. As a results, the volume loss ratio of the fish cage as measured using a depth sensor was indicated a value of the 30.3% under the current velocity (1.1m/s). The fish cage should be consisted of a concrete block with a weight over 10 tons, a mooring rope diameter over 28mm PP, and a shackle of 25mm under the current speed of 1m/sec for reasonable stability.

Establishment of Tailing Disposal Scenario in Open-Pit and Surface Pillar Stability Analysis (노천채굴적 내 광미 적치 시나리오 구축 및 천반 수평필러 안정성 분석)

  • Il-Seok Kang;Jae-Joon Song;Thomas Pabst
    • Tunnel and Underground Space
    • /
    • v.34 no.1
    • /
    • pp.54-70
    • /
    • 2024
  • Utilization of completed open-pit for mining waste disposal is an alternative method of tailing storage facility (TSF), which can minimize the area and cost required for the installation of TSF. However, long-term tailing disposal into open-pit has a potential risk of reducing mechanical stability of surrounding rock mass by acting as an additional load. In this research, a realistic open-pit tailing disposal scenario of 60,400 hours was established based on the case of Marymia gold mine, Australia. Mechanical stability of surface pillar between open-pit and underground stope was analyzed numerically by using Sigma/W, under different stope geometry and rock mass conditions. Simulation results showed that long-term tailing disposal into open-pit can significantly increase the failure probability of surface piller. This result suggests that mechanical stability of mine geometry should be conducted beforehand of open-pit tailing disposal.

A study on the stability analysis for double deck tunnel branch geometry (복층터널 분기 기하구조에 따른 안정성 검토에 관한 연구)

  • Park, Woo-Jeong;Jang, Namju;Kim, Kihwan;Choi, Chang-rim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.393-404
    • /
    • 2018
  • The tunnel can be planned to connect to underground roadway and surface road. The large tunnel and branch section are made when the ramp tunnel access to the main tunnel. In the branch section, stress concentration can be assigned and it can be very important for the stability of the tunnel. This study assessed the behavior of rock pillar in double deck tunnel diverging area by using a two dimensional numerical analysis. This study evaluated different safety factors according to pillar width and the ramp tunnel position in branch. By the assessment of the strength-stress ratio, tunnel pillar width is suggested in order to secure the safety factor 1.5.

A Study on the Stability Analysis of Underground Mine using LIDAR (LIDAR를 활용한 지하광산의 안정성 분석에 관한 연구)

  • Lee, Seung-Joong;Kim, Byung-Ryeol;Jin, Yeon-Ho;Choi, Sung-Oong
    • Tunnel and Underground Space
    • /
    • v.27 no.6
    • /
    • pp.406-421
    • /
    • 2017
  • This study describes a precise numerical analysis process by adopting the real image of mine openings obtained by LIDAR, which can produce a point cloud data by measuring the target surface numerically. Research area is a section of underground limestone mine which is used hybrid room-and-pillar method for improving the production rate. From the application of LIDAR to this section several results were deduced, that is, the central axis of upper and lower vertical safety pillars is distorted to the direction of NW and the section area of lower vertical safety pillar is $34m^2$ smaller than the designed area of $100m^2$. The results of precise measurement in geometrical shape of mine openings and precise simulation in numerical analysis confirms that LIDAR techniques can be suggested as a valuable tool for stability analysis in underground mine by configuring the mine opening shape.

Analysis of Pillar Stability for Ground Vibration and Flyrock Impact in Underground Mining Blasting (발파진동 및 비산충격에 대한 광주 안정성 분석)

  • Park, Hyun-Sik;Kim, Ji-Soo;Ryu, Bok-Hyun;Kang, Choo-Won
    • Explosives and Blasting
    • /
    • v.30 no.2
    • /
    • pp.9-20
    • /
    • 2012
  • These days, mining industry prefers underground development for large mining because of exhaustive minning resources and large drafts and mining cavities thanks to extensive distribution of heavy excavation machines. In a mining design, to control collapse of cavities and secure stability, design of cavities and pillars are considered as very important. Therefore, this study obtained a prediction equation of blasting vibration through instrumentation for underground cavities. And we obtained theoretical shock vibration imposed on pillar through fragmentation analysis and measurement of flyrock distance. To examine the influence of pillar in underground mining blasting, we carried a finite element analysis and compared the result with prediction equation of blasting vibration, and shock vibration of flyrock when a impact was imposed on pillar and theoretical shock vibration.

Case study for Stability Estimation of Subway Twin Tunnels Using Scaled Model Tests (축소모형실험을 통한 지하철 병설터널의 안정성평가 사례연구)

  • Kim, Jong-Woo
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.425-438
    • /
    • 2019
  • A scaled model test was performed to evaluate the stability of subway twin tunnels excavated in the sedimentary rocks with subhorizontal bedding planes. The size of studied tunnel was 6.2 m×6.8 m and pillar width was 4 m. The anisotropic model test specimen was manufactured with the modeling materials suitable for in-situ rocks by way of dimensional analysis. Fracture and deformation behaviors of tunnels according to applied loads were investigated through the biaxial compression test. As the load was increased on the model specimen, the first crack occurred in the middle part of the pillar across twin tunnels and the gradual fractures progressed at crown and floor of twin tunnels. All the cracks in pillar were generated along the existing bedding planes so that they were found to be the main cause of the pillar failure. In addition, the test results were verified by numerical analysis on the experimental conditions using FLAC ubiquitous joint model. The distribution of plastic regions obtained from numerical analysis were in general agreement with test results, confirming the reliability of the scaled model test conducted in this study.

A Study on the Estimation of the Behaviors by Compression Method of Rock Pillar between Close Parallel Tunnels (근접 병설터널에서 필라 압축방법에 따른 필라부 강도특성 변화에 관한 연구)

  • Kim, Jae-Kyoung;Lee, Song
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.12
    • /
    • pp.87-94
    • /
    • 2013
  • In recent years, tunnel construction is being increased in order to resolve traffic congestion around urban area, however there are a lot of difficulties due to restrictions such as interference with existing alignment, adjacent structures and cost increase of land acquisition as well as public complaints for negative environmental impacts near the expected tunnel construction site. Therefore, applications of close parallel tunnel have been increasing greatly. But close parallel tunnels cannot guarantee the stability compared with normal parallel tunnel which has enough distance between tunnels. So various methods to strengthen the pillar have been introduced recently, however there is few methods which consider the pillar behaviour in the state of compression. In this paper, the reinforcement methods which reflect the behavior of pillar were reviewed with comparision and analysis by numerical method.