• Title/Summary/Keyword: Pile load capacity

Search Result 466, Processing Time 0.025 seconds

Prediction on Ultimate Vertical and Horizontal Bearing Capacity of Steel Pipe Piles by Means of PAR (PAR에 의한 강관 말뚝의 극한 수직 및 수평 지지력 예측)

  • 최용규
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.13-24
    • /
    • 1997
  • A predicting method for ultimate vertical and horizontal bearing capacity by means of PAR(Pile Analysis Routines) was suggested. Based on the static pile load test data, case studies by means of PAR were performed. Ultimate pile capacity predicted by PAR was within 15% error range of that determined by stairs pile load tests. Also, the results of static pile load test, statnamic tests and PDA data performed on pipe piles were compared and, by using PAR, ultimate pile capacity was determined. Distributions of atrial pile load could be predicted and load transfer analysis could be done approximately by those distributions.

  • PDF

Characteristics on the Vertical Load Capacity Degradation for Impact driven Open-ended Piles During Simulated Earthquake /sinusoidal Shaking, (타격관입 개단말뚝의 동적진동에 의한 압축지지력 저감특성)

  • 최용규
    • Geotechnical Engineering
    • /
    • v.12 no.6
    • /
    • pp.51-64
    • /
    • 1996
  • After the model open-ended pile attached with strain gages was driven into a pressure chamber, in which the saturated microfine sand was contained, the static compression loading test was performed for that pile. Based on the test results, ultimate pile capacity was determined. Then, either simulated earthquake shaking or sinusoidal shaking was applied to the pile with the sustained certain level OP ultimate pile load. Then, pile capacity degradations characteristics during shaking were studied. Pile capacity degradation during two different shakings were greatly different. During the simulated earthquake shaking, capacity degradation depended upon the magnitude of applied load. When the load applied to the pile top was less than 70% of ultimate pile capacidy, pile capacity degradation rate was less than 8%, and pile with the sustained ultimate pile load had the degradation rate of 90%. Also, most of pile capacity degradation was reduced in outer skin friction and degradation rate was about 80% of ultimate pile capacity reduction. During sinusoidal shaking, pile capacity degradation did not depend on the magnitude of applied load. It depended on the amplitude and the frequency , the larger the amplitude and the fewer the frequency was, the higher the degradation rate was. Reduction pattern of unit soil plugging (once depended on the mode of shaking. Unit soil plugging force by the simulated earthquake shaking was reduced in the bottom 3.0 D, of the toe irrespective of the applied load, while reduction of unit soil plugging force by sinusoidal shaking was occurred in the bottom 1.0-3.0D, of the toe. Also, the soil plugging force was reduced more than that during simulated earthquake shaking and degradation rate of the pile capacity depended on the magnitude of the applied load.

  • PDF

A Case Study on Application of Bi-directional Pile Load Test for verifing the Bearing Capacity of a Large-diameter Drilled Shaft Pile (자갈층에 근입된 대구경 현장타설말뚝의 지지능력 확인을 위한 양방향 재하시험 적용사례)

  • Lee, Min-Hee;Jung, Sung-Min;Kim, Sang-Il;Choi, Yong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.506-513
    • /
    • 2006
  • In this study, multi-level hi-direction pile load tests for drilled shaft pile socketed into the gravel were performed. The lower and upper hi-direction load test assemblies were located on tip of pile and 15m above the tip of pile. Based on the results of pile load test, it was analyzed bearing capacity of gravel, skin firction of upper soils and skin friction of lower soils. It was confirmed that drilled shaft socketed into the gravel had enough bearing capacity.

  • PDF

Bearing Capacity of Driven H-Piles in Embankment (성토지반에 타입된 H형강 말뚝의 지지거동)

  • 박영호;정경자;김성환;유성근;이재혁;박종면
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.173-182
    • /
    • 2000
  • To find axial and lateral responses of impact-driven H piles in embankment(SM), the H piles are instrumented with electric strain gages, dynamic load test is performed during driving, and then the damage of strain gages is checked simultaneously. Axially and laterally static load tests are performed on the same piles after one to nine days as well. Then load-settlement behavior is measured. Furthermore, to find the set-up effect in H pile, No. 4, 16, 26, and R6 piles are restriked about 1, 2, and 14 days after driving. As results, ram height and pile capacity obtained from impact driving control method become 80cm and 210.3∼242.3ton, respectively. At 15 days after driving, allowable bearing capacity by CAPWAP analysis, which 2.5 of the factor of safety is applied for ultimate bearing capacity, increases 10.8%. Ultimate bearing capacity obtained from axially static load test is 306∼338ton. This capacity is 68.5∼75.7% at yield force of pile material and is 4∼4.5 times of design load. Allowable bearing capacity using 2 of the factor of safety is 153∼169ton. Initial stiffness response of the pile is 27.5ton/mm. As the lateral load increases, the horizontal load-settlement behaves linearly to which the lateral load reaches up to 17ton. This reason is filled with sand in the cavity formed between flange and web during pile driving. As the result of reading with electric strain gages, flange material of pile is yielded at 19ton in horizontal load. Thus allowable load of this pile material is 9.5ton when the factor of safety is 2.0. Allowable lateral displacement of this pile corresponding to this load is 23∼36mm in embankment.

  • PDF

Behavior of Axial Load Transfer for Open-ended Steel Pipe Pile in Alluvial Deposits (하상퇴적토층에 관입된 개단강관말뚝의 축하중 전이 거동)

  • 김상현;성인출;정창규;김명학;최용규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.283-290
    • /
    • 2001
  • In this study, static Pile load tests and PDA for open-ended steel pipe pile($\phi$ = 609.6 mm, t = 14 mm) penetrated into the gravel layer(GP - GM) was accomplished and axial load distribution was measured. Based on the tests results, the ultimate bearing capacity and axial load bearing mode were examined. Also, the ultimate pile capacity was calculated by APIL $E^{PLUS}$./.

  • PDF

Large-scale pilot test study on bearing capacity of sea-crossing bridge main pier pile foundations

  • Zhang, Xuefeng;Li, Qingning;Ma, Ye;Zhang, Xiaojiang;Yang, Shizhao
    • Geomechanics and Engineering
    • /
    • v.7 no.2
    • /
    • pp.201-212
    • /
    • 2014
  • Due to the sea-crossing bridge span is generally large and main pier pile foundations are located in deep water and carry large vertical load, sea-crossing bridge main pier pile foundations bearing mechanism and load deformation characteristics are still vague. Authors studied the vertical bearing properties of sea-crossing bridge main pier pile foundations through pilot load tests. Large tonnage load test of Qingdao Bay Bridge main pier pile program is designed by using per-stressed technique to optimize the design of anchor pile reaction beam system. Test results show that the design is feasible and effective. This method can directly test bearing capacity of main pier pile foundations, and analysis bearing behaviors from test results of sensors which embedded in the pile. Through test study the vertical bearing properties of main pier pile foundation and compared with the generally short pile, author summarized the main pier pile foundations vertical bearing capacity and the main problem of design and construction which need to pay attention, and provide a reliable basis and experience for sea-crossing bridge main pier pile foundations design and construction.

Uplift Capacity and Creep Behavior of Concrete Pile Driven in Clay (점토지반에 타입된 콘크리트 말뚝의 인발저항 및 크리프 거동)

  • 신은철;김종인;박정준;이학주
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.371-378
    • /
    • 2001
  • The working load at pile is sometimes subjected to not only compression load but also lateral load and uplift forces. Pile foundation is essential and uplift load can be applied because of buoyancy, a typhoon, wind or seismic forces. This study was carried out to determine the uplift capacity of concrete pile foundation driven in clay. Pile was driven in clay, between pile and clay adhesion factor was estimated, and it is the mean value between the cast-in-situ-pile and steel pipe pile. When pile foundation is loaded for long time, creep behavior occurs. The behavior of creep is originated from the clay creep contacted with pile. The creep behavior of pile foundation embedded in clay is heavily depended on the thickness of clay around the pile shaft, pore water pressure in clay, and creep behavior of clay.

  • PDF

Bearing Capacity and Control Method of Driven Piles (기성말뚝의 지지력 거동해석과 시공관리방안)

  • 박영호;김경석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.249-258
    • /
    • 1999
  • Dynamic load and static load tests are performed on steel pipe piles and concrete piles at five construction sites in highway to compare the difference of load bearing mechanisms. At each site, one steel pile is instrumented with electric strain gages and dynamic tests are performed on the pile during installation. Damages of strain gages due to the installation are checked and static test is performed upon the same pile after two or seven days as well. It shows that load transfer from side friction to base resistance behaves somewhat differently according to the results of load-settlement analysis obtained from PDA and static load test. Initial elastic stage of load settlement curves of two load tests is almost similar. But after the yielding point, dynamic resistance of pile behaves more stiffer than static resistance, thus, dynamic load test result might overestimate the real pile capacity compared with static result. Analysis of gage readings shows that unit skin friction increases exponentially with depth. The skin friction is mobilized at the 1∼2m above the pile tip and contributes to the considerable side resistance. Comparison of side and base resistances between the measured value and the calculated value by Meyerhof's bearing capacity equation using SPT N value shows that the calculated base resistance is higher than the measured. Therefore, contribution of side resistance to total capacity shouldn't be ignored or underestimated. Finally, based upon the overall test results, a construction control procedure is suggested.

  • PDF

The Study of Load Test Method for In-Site Casting Pile In High Rise Building. (초고층에서의 현장타설말뚝 재하시험방법 고찰)

  • Kim, Dae-Hak;Hong, Young-Kil;Han, Sung-Moo;Gu, Ung-Hwoe;Park, Chan-Duck
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.385-392
    • /
    • 2008
  • Modern city have had a lot of high-rise building in high standards and multi-level performance. Using of city space reach better stages by using integration. These skyscraper have increased working load on ground. that building is efficiently designed for that soil capacity is well applied. With material side, big size pile, high strength concrete and high strength steel is used for that getting enough lobby space and resisting load increased of high-rise building. limit load test and load transmitted test can make soil capacity optimized. By the way, method of measuring pile capacity is more advanced and bigger. pile type applied by high rise building have underground excavation space, also reflect regional soil property and have some fact reviewed. A lot of high rise building recently is built as land mark in Seoul, Busan and Incheon. about method of measuring capacity of foundation pile, example of construction field is compared and reviewed.

  • PDF