• Title/Summary/Keyword: Pile heaving

Search Result 18, Processing Time 0.024 seconds

The effect of group pile installation (무리말뚝 시공의 영향)

  • Lee, Myung-Whan;Hong, Hun-Sung;Kim, Sung-Hoi;Jun, Young-Suk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1303-1311
    • /
    • 2006
  • Most of the piles are designed as group piles. In certain geotechnical environments, the installation of group piles causes heaving of the already installed piles. The unfavorable effects of pile heaving on pile bearing capacity have been well known to field engineers. However not many engineers pay enough attention to this subject. According to our recent researches, not only the bearing capacity but also the pile material could be seriously damaged due to the installation of nearby piles, especially with the cases of precast concrete piles. When the pull-out force due to installation of neighboring piles acting on the already installed precast concrete pile exceeds the shaft friction, pile heaving occurs. At the same time, if the pull-out force exceeds the allowable tensile strength of the precast concrete pile, tensile failure is inevitable, which is critical for the pile integrity. In other cases the pile material was not damaged but serious relaxation occurred as the results of pile heaving. In this paper, the pull-out mechanism due to the installation of group piles is explained.

  • PDF

Behaviour of a Single Pile in Heaving Ground Due to Ground Excavation (지하터파기로 인해 융기(Heaving)가 발생한 지반에 근입된 단독말뚝의 거동)

  • Lee, Cheolju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.1
    • /
    • pp.27-34
    • /
    • 2010
  • A finite element analysis has been conducted to clarify the behaviour of a single pile in heaving ground related to ground excavation. The numerical analysis has included soil slip at the pile-soil interface, analysing the interaction between the pile and the clay has been studied. The study includes the upward movement of the pile, the relative shear displacement between the pile and the soil and the shear stresses at the interface and the axial force on the pile. In particular, the shear stress transfer mechanism at the pile-soil interface related to a decrease in the vertical soil stress has been rigorously analysed. Due to the reductions in the vertical soil stress after excavation, the relative shear displacement and the shear stress along the pile have been changed. Upward shear stress developed at most part of the pile (Z/L=0.0-0.8), while downward shear stress is mobilized near the pile tip (Z/L=0.8-1.0) resulting in tensile force on the pile, where Z is the pile location and L is the pile length. Some insights into the pile behaviour in heaving ground analysed from the numerical analyses has been reported.

Analysis of the Shaft Resistance of a Pile Embedded in Sand Responding to Ground Deformation by Model Tests of Simulated Ground Heaving (실내모형실험을 통한 지반 융기시 사질토 지반에 매설된 지반 변형 대응형 말뚝의 주면 마찰 저항 분석)

  • Shin, Sehee;Lee, Kicheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.1
    • /
    • pp.5-14
    • /
    • 2023
  • The pile driving process may lead to ground heaving, causing additional positive skin friction to act on the piles, compromising their stability. This study proposes a new pile foundation type that can reduce positive skin friction. This was investigated by designing and constructing a pile with a hydraulic cylinder which actively responds to ground deformation. The newly proposed pile design was compared against traditional piles in multiple model tests where ground heaving was simulated. In the tests, base load and total shaft resistance were measured during ground heaving and with expansion of the hydraulic cylinder. As a result of the tests, a very small amount of expansion of the hydraulic cylinder member completely reduced the positive skin friction and increased the base load. Excessive expansion of the hydraulic cylinder, however, generates negative skin friction beyond the zero skin friction state. Therefore, it is necessary to estimate the appropriate level of hydraulic cylinder expansion, taking into account the amount of ground heaving and the allowable displacement of the pile.

Numerical Analysis on the Behavior of Clayey Foundation Reinforced with Steel Sheet Pile (강널말뚝으로 보강된 점토지반거동의 수치해석)

  • 양극영;이대재;정진섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.1
    • /
    • pp.142-154
    • /
    • 2002
  • This study was performed to investigate constraint effects of deformation (heaving, lateral displacement) of clayey foundation reinforced with sheet pile at the tip of banking on soft ground, under intact state (natural) and the state of vertical drain respectively. The following results are obtained. 1. In view of reduction in heaving or lateral displacement, sheet pile is not supposed to be of use. 2. Sheet pile is effective only when vertical drain is installed for acceleration of consolidation and gradual loading is applied.

Analysis of the Behavior Characteristics of Pile Foundations Responding to Ground Deformation (지반 변형 대응형 말뚝 기초의 거동 특성 분석)

  • Lee, Junwon;Shin, Sehee;Lee, Haklin;Kim, Dongwook;Lee, Kicheol
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.21-32
    • /
    • 2020
  • As the global large-scale infrastructure construction market expands, the construction of civil engineering structures in extreme environments such as cold or hot regions is being planned or constructed. Accordingly, the construction of the pile foundation is essential to secure the bearing capacity of the upper structure, but there is a concern about loss of stability and function of the pile foundation due to the possibility of ground deformation in extreme cold and hot regions. Therefore, in this study, a new type of pile foundation is developed to respond with the deformation of the ground, and the ground deformation that can occur in extreme cold and hot region is largely divided into heaving and settlement. The new type of pile foundation is a form in which a cylinder capable of shrinkage and expansion is inserted inside the steel pipe pile, and the effect of the cylinder during the heaving and settlement process was analyzed numerically. As a result of the numerical analysis, the ground heaving caused excessive tensile stress of the pile, and the expansion condition of the cylinder shared the tensile stress acting on the pile and reduced the axial stress acting on the pile. Ground settlement increased the compressive stress of the pile due to the occurrence of negative skin friction. The cylinder must be positioned below the neutral point and behave in shrinkage for optimum efficiency. However, the amount and location of shrinkage and expansion of cylinder must comply with the allowable displacement range of the upper structure. It is judged that the design needs to be considered.

A Study on Ground Heave Characteristics of Soft Ground with DCM (DCM으로 개량된 연약점토지반의 지반융기에 관한 고찰)

  • You, Seung-Kyong;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.75-84
    • /
    • 2020
  • This paper described the analysis result on heaving of soft ground with DCM column type, based on the results of laboratory model tests on the soft ground with DCM column. The heave characteristics of the soft ground were evaluated according to the application of DCM column in soft ground. The results showed that the heaving of soft ground without DCM column occurred rapidly when the lateral deformation of soft ground increased significantly under the 4th load step condition. In addition, the heaving of soft ground in final load step caused tensile failure of the ground surface. The maximum heaving of the soft ground with the DCM column occurred in the final load step, and the heaving quantity decreased in the order of pile, wall, and grid type. Especially, the soft ground with DCM of grid type effectively resisted ground heaving, even if it was extremely failure in the bottom ground of embankment. The results of the maximum heaving according to the measurement point showed that the heaving of the soft ground with DCM of grid type was 3.1% and 1.6% compared to that of the pile and wall type at the location of LVDT-1, and the heaving of the LVDT-2 position was 1.0% and 2.1%, respectively.

Numerical Analysis on Deformation of Soft Clays Reinforced with Rigid Materials (말합연약식반의 변형위석에 관한 수치해석)

  • Gang, Byeong-Seon;Park, Byeong-Gi;Jeong, Jin-Seop
    • Geotechnical Engineering
    • /
    • v.1 no.2
    • /
    • pp.27-40
    • /
    • 1985
  • This study aims at the development of computer Program for the deformation analysis of soft clay layers, and using this computer program, study the constraint effect of deformation- heaving, lateral displacement-of the soft clay layers reinforced with sheet pile at the tip of banking or improvement of soft clay layer up to hard strata, under intact state (natural) and the state of vertical drain respectively. For this study, Biot's consolidation theories and modified Cam-clay theory for constitutive equation for FEMI were selected and coupled governing equation, and christian-Boehmer's technique was applied to solve the coupled relationship. The following results are obtained. 1. Sheet pile or improvement of soft clay layer to the hard strata work well against the settlement of neighboring ground. B. In view of restriction of heaving or lateral displacement, sheet pile is not supposed to be of use. 3. Sheet pile is of effect only when vertical drain is constructed for acceleration of consolidation and load increases gradually. B. The larger the rigidity of improvement of layer to hard strata is, the less settlement occurs.

  • PDF

Finite Element Analysis of the Complex Behavior and Load Bearing Characteristics of a Foundation Pile Connector (유한요소해석을 이용한 복합거동 연결체의 하중지지 특성)

  • Shin, Hee-Soo;Kim, Ki-Sung;Hong, Seung Seo;Kim, YoungSeok;Ahn, Jun-Hyuk
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.451-460
    • /
    • 2019
  • In this study, a complex behavior connector is proposed to overcome the problems that may occur when small pile pipe and micro pile is used as a friction pile concept in the lower foundation of an oil sand plant where a piloti foundation is used. The individual settlement and heaving of piles were connected in one group to allow the composite behavior. This study performed to analyze the load carrying capacity to identify a complex behavior. In addition, the shape of the composite behavior connector was examined to apply the advantages of pile-group and piled raft foundations to oil sand plants. A scale model was constructed to measure the behavior of the load. The stability and weakness of the device were selected to determine the shape of the connector using the scale model testing.

A Study on Behavior Characteristics of Soft Ground by DCM Arrangement Type (DCM 배치 형상에 따른 연약지반 거동 특성에 관한 연구)

  • You, Seung-Kyong;Lee, Jong-Young;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.125-131
    • /
    • 2021
  • This study described the relationship of settlement-lateral displacement and settlement-heaving according to the DCM type using the model test results, in order to evaluate the behavioral characteristics of the soft ground improved with DCM. As a result, it was found that the total settlement of the model ground was relatively small in the soft ground, to which the DCM was applied, and the settlement was less in the order of the grid type, wall type, and pile type under the same load conditions. This trend was also the same for the lateral displacement and heaving. In addition, the relationship between settlement and lateral displacement of soft ground was analyzed to be similar to that of previous study (Leroueil et al., 1990). Therefore, the DCM of grid type was evaluated to be superior to other types for lateral flow and heaving in the improvement effect of soft ground.