• Title/Summary/Keyword: Pig oocyte

Search Result 117, Processing Time 0.022 seconds

In Vitro Fertilization and Embryonic Development of Porcine Oocytes Matured in mSOF

  • J. M. Koo;S. H. Hyun;Lee, B. C.;S. K. Kang;W. S. Hwang
    • Journal of Embryo Transfer
    • /
    • v.17 no.3
    • /
    • pp.239-249
    • /
    • 2002
  • Embryos derived from pig oocytes matured in mSOF are able to develop to blastocysts after IVF. Experiment 1 evaluated the effects of two maturation media (TCM-199 vs mSOF) on maturation rate, fertilization parameters, including penetration, polyspermy, male pronuclear formation, and the mean number of sperm penetrated per oocyte. Experiment 2 and Experiments 3 examined the effects of two maturation media on zona pellucida solubility and cortical granule distribution by transmissible electron microscopy, respectively. Experiment 4 assessed the effects of two maturation media on the in vitro embryo cleavage rate and development to blastocyst. Lastly, experiment 5 examined the cell number of blastocyst. An effect of media (P<0.05) was detected for mSOF on the mean number of sperm per oocyte. In TCM group, zona digestion time (196.5$\pm$15.5 vs 131.6$\pm$20.1 before IVF, 397.5$\pm$30.3s vs 185.3$\pm$16.4s after IVF, p<0.05) was higher in TCM-199 group. No significant effects of media was observed on cortical granule distribution between two groups by TEM. An effect (P<0.05) was observed on embryo development to blastocyst (16% vs 8%) but not on cleavage rates. No significant effects of media was observed on total cell number of blastocyst. We found that the high mean number of sperm penetrated per oocyte and the weaker zona pellucida on the basis of the digestion time was shown in pig oocytes matured in mSOF, however, porcine oocyte maturation with supplemented synthetic oviduct fluid medium (mSOF) resulted in blastocyst cell numbers comparable to those observed with Tissue Culture Medium 199.

Studies on the Metabolic Cooperativity between Ooccte and Cumulus Cells in Mammalian Oocyte Cumulus Complexes in vitro (포유동물 난자-난구 복합체의 Metabolic cooperativity)

  • 고선근;나철호;권혁방
    • The Korean Journal of Zoology
    • /
    • v.31 no.2
    • /
    • pp.81-86
    • /
    • 1988
  • The relationship between cumulus cell expansion, cocyte maturation and metabolic cooperativitiy was investigated by using mouse and pig cocyte-cumulus complexes in vitro. Cocyte germinal vesicle breakdown (GVBD) and cumulus expansion were manipulated with hormones or reagents which increase intracellular cAMP leveL Metabolic cooperativity between oocyte and cumulus cells was assessed by determination of the fraction of radiolabelled uridine marker that was transferred from the cumulus mass to the oocyte. Uptake of uddine marker by mouse and pig cumulus mass was increased by about fourfold of basal level with the stimulation of hormones (human choriononic gonadotrophin, HCG; follicle stimulating hormone, FSH) or cyclic AMP sttmulators (3-isobutyl-1-methylxanthine, IBMX; forskolin) during culture. However, the fraction of uridine that was transferred from the cumulus mass to the cocyte (transfer ratio) was gradually decreased during culture, irrespective with the presence of hormones or stimulators. The decrease of the transfer ratio was not correlated with the state of occyte whether they have GV or not, or with the degree of cumulus expansion. In mouse complexes, HCG induced more significant reducton of transfer ratio than other treatments. These results do not support the idea that modulations of metabolic cooperativity between cumulus cells and oocytes are important for the regulation of meiotic resumption in mammals.

  • PDF

Liquid Boar Sperm Quality during Storage and In vitro Fertilization and Culture of Pig Oocytes

  • Park, C.S.;Kim, M.Y.;Yi, Y.J.;Chang, Y.J.;Lee, S.H.;Lee, J.J.;Kim, M.C.;Jin, D.I.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.10
    • /
    • pp.1369-1373
    • /
    • 2004
  • The percentages of sperm motility and normal acrosome on the liquid boar semen diluted and preserved at $4^{\circ}C$ with lactose hydrate, egg yolk and N-acetyl-D-glucosamine (LEN) diluent were significant differences according to preservation day and incubation time, respectively. The sperm motility steadily declined from 96.9% at 0.5 h incubation to 78.8% at 6 h incubation at 1 day of preservation. However, the sperm motility rapidly declined after 4 day of preservation during incubation. The normal acrosome steadily declined from 93.3% at 0.5 h incubation to 73.8% at 6 h incubation at 1 day of preservation. However, the normal acrosome rapidly declined after 3 day of preservation during incubation. The rates of sperm penetration and polyspermy were higher in 5 and $10{\times}10^6$ sperm/ml than in 0.2 and $1{\times}10^6$ sperm/ml. Mean numbers of sperm in penetrated oocyte were highest in $10{\times}10^6$ sperm/ml compared with other sperm concentrations. The rates of blastocysts from the cleaved oocytes (2-4 cell stage) were highest in $1{\times}10^6$sperm/ml compared with other sperm concentrations. In conclusion, we found out that liquid boar sperm stored at $4^{\circ}C$ could be used for in vitro fertilization of pig oocytes matured in vitro. Also, we recommend $1{\times}10^6$sperm/ml concentration for in vitro fertilization of pig oocytes.

Effects of Plasminogen on Sperm-Oocyte Interaction during In Vitro Fertilization in the Pig

  • Sa, Soo-Jin;Kim, Tae-Shin;Park, Soo-Bong;Lee, Dong-Seok;Park, Chun-Keun
    • Reproductive and Developmental Biology
    • /
    • v.32 no.2
    • /
    • pp.97-104
    • /
    • 2008
  • Plasminogen activators (PAs) are serine protease that cleave plasminogen to form the active protease plasmin. PA/plasmin system playa role in mammalian fertilization and motility and acrosome reaction of sperm. The present study was undertaken to identify PAs in porcine gametes and investigate a possible role of plasminogen in in vitro fertilization in the pig. When boar spermatozoa were preincubated in a fertilization medium (mTBM) for 0, 2, 4 or 6 h, the activity of tPA-PAI ($110{\sim}117\;kDa$), tPA ($62{\sim}70\;kDa$), and uPA ($34{\sim}38\;kDa$) was observed in the sperm incubation medium and sperm sample. PA activities in the sperm incubation medium significantly (p<0.05) increased according to increasing incubation times, while PA activities in sperm significantly (p<0.05) decreased at the same times. In addition, the rate of acrosome reaction in spermatozoa increased by increasing culture times. When oocytes were separated from porcine cumulus-oocytes complexes at 0, 22 or 44 h of maturation culture, no PA activities were observed in cumulus free-oocyte just after aspiration from follicles. However, the activity of tPA-PAI ($108{\sim}113\;kDa$) and tPA ($75{\sim}83\;kDa$) was observed at 22 h of in vitro culture and significantly (p<0.05) increased as the duration of the culture increased. On the other hand, when porcine oocytes were activated by sperm penetration or calcium ionophore, plasminogen significantly (p<0.05) increased ZP dissolution time (sec) in activated oocytes by sperm penetration. These results suggest that supplementation of plasminogen to fertilization medium may playa positive role in the improvement of in vitro fertilization ability in the pig.

Effects of lipopolysaccharides on the maturation of pig oocytes

  • Yi, Young-Joo;Adikari, Adikari Arachchige Dilki Indrachapa;Moon, Seung-Tae;Lee, Sang-Myeong;Heo, Jung-Min
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.1
    • /
    • pp.163-170
    • /
    • 2021
  • Bacterial infections in the female reproductive tract negatively affect ovarian function, follicular development, and embryo development, leading to the eventual failure of fertilization. Moreover, bacterial lipopolysaccharides (LPS) can interfere with the immune system and reproductive system of the host animal. Therefore, this study examined the effect of LPS on the in vitro maturation (IVM) of pig oocytes. Oocytes were matured in TCM199 medium in the presence of varying concentrations of LPS (0 - 50 ㎍·mL-1). The maturation rate, cortical granules (CGs) migration, and chromosome alignment were subsequently evaluated during the meiotic development of the oocytes. We observed a dose-dependent and significant decrease in the metaphase II (MII) rate with increasing concentrations of LPS (97.6% control [0 ㎍·mL-1 LPS] vs. 10.4-74.9% LPS [1 - 50 ㎍·mL-1], p < 0.05). In addition, compared to the control oocytes without LPS, higher levels of abnormal CGs distribution (18.1 - 50.0% LPS vs. 0% control), chromosome/spindle alignment (20.3 - 56.7% LPS vs. 0% control), and intracellular ROS generation were observed in oocytes matured with LPS (p < 0.05). Nitrite levels were also increased in the maturation medium derived from the oocytes matured with LPS (p < 0.05). These results indicate that LPS induces oxidative stress during IVM and affects oocyte maturation, including CGs migration and chromosome alignment of pig oocytes.

Fatty Acid Compositions of Oocytes, Follicular, Oviductal and Uterine Fluids of Pig and Cow

  • Yahia Khandoker, M.A.M.;Tsujii, H.;Karasawa, D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.5
    • /
    • pp.523-527
    • /
    • 1997
  • The fatty acid compositions of oocytes, follicular, oviductal and uterine fluids of pig and cow were analyzed using gas chromatography. Myristic (C 14: 0), palmitic (C 16: 0), palmitoleic (C 16: 1), stearic (C 18 : 0), oleic (C 18: 1), linoleic (C 18: 2), linolenic (C 18: 3) and arachidonic (C 20: 4) acids were identified as the common fatty acid constituents with little exception. Oleic acid composition was the highest (21.90 to 36.24%) in both pig and cow followed by palmitic (18.61 to 31.90%) and stearic (10.34 to 20.39%) acid. The three polyunsaturated fatty acids like linoleic, linolenic and arachidonic acids were detected in both pig and cow reproductive fluid samples. Myristic acid was not detected in pig oviductal fluid. Similarly, in cow oocytes myristic, palmitoleic and linolenic acids were not detected. Moreover, palmitic, stearic, oleic and linoleic acid comprised about 80% (73.74 to 88.00%) of the total fatty acids in the different samples analyzed in both animals.

Identification of Protein Candidates in Porcine Oocytes during In Vitro Maturation

  • Lee, Jae-Dal;Cui, Xiang-Shun;Im, Gi-Sun;Seong, Hwan-Hoo;Kim, Nam-Hyung
    • Reproductive and Developmental Biology
    • /
    • v.32 no.2
    • /
    • pp.71-79
    • /
    • 2008
  • Surface-enhanced laser desorption and ionization time-of-flight mass spectrometry (SELDI-TOF MS) is one of the recently developed proteomic technologies which is based on capturing proteins and peptides by chemically modified surfaces and highly sensitive for the analysis of complex biological samples. In the present study, to gain insights into oocyte maturation and early embryo development, SELDI-TOF-MS was used to find the protein candidates that are specifically or prominently expressed in porcine oocytes at the in vitro matured metaphase II (MIIl) and germinal vesicle (GV) stages. By selected CM10 chip, 16 candidates were found to be up-regulated in GV stage oocytes compared with in MII stage oocytes, their molecular weights were 8,180 (2 candidates), 10,226 (5 candidates), 15,767 (5 candidates) and 16,770 (4 candidates) Da respectively. And the expression of 29 candidates were higher in MII than in GV stage oocytes, their molecular weight were 10,832 (3 candidates), 17,743 (8 candidates), 20,122 (3 candidates), 22,131 (3 candidates), 24,857 (7 candidates) and 33,507 (5 candidates) Da, respectively. The expression of selected 13 candidates (0.2 and 1.0 % error tolerances) were analyzed using real time RT-PCR. The proteins that differentially regulated during oocyte in vitro maturation in the pigs may be potential biomarkers of oocyte maturation and quality.

Effects of Magnetized Medium on In Vitro Maturation of Porcine Cumulus Cell-Oocyte Complexes

  • Kim, Yun-Jung;Lee, Sang-Hee;Jung, Soo-Jung;Park, Choon-Keun
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.241-247
    • /
    • 2014
  • The objective of this study was to study the effect of magnetized water on porcine cumulus cell-oocyte complexes (COCs). Oocytes obtained from female pig were cultured in a medium magnetized at 0, 2000, 4000, and 6000 Gauss (G) for 5 minutes using the neodymium magnet. Subsequently, intracellular hydrogen peroxide ($H_2O_2$) concentration, glutathione (GSH) activity, oocyte membrane integrity, anti-apoptosis factor Bcl-xL expression, and nuclear maturation were analyzed. The intracellular $H_2O_2$ levels in COCs cultured for 44 hours were not significantly different among the variously magnetized samples. However, GSH activity were significantly higher in the magnetized samples compared to the 0 G sample. The Bcl-xL mRNA expression in COCs cultured for 44 hours was higher in the 4000 G sample than other treatment groups. Membrane damage in COCs cultured for 22 and 44 hours was significantly lower in 4000 G group than control group. On the other hand, nuclear stages as maturation indicator significantly increased in 2000, 4000, and 6000 G groups compared to 0 G group. These results indicate that incubation of porcine oocytes and cumulus cells in magnetized medium improves intracellular GSH levels, membrane integrity and nuclear maturation, and inhibits apoptosis in vitro.

Treatment of Exogenous GDF9 and BMP15 during In Vitro Maturation of Oocytes increases the Cell Number of Blastocysts in Pigs

  • Kim, Min Ju;Kim, Young June;Shim, Hosup
    • Journal of Embryo Transfer
    • /
    • v.31 no.1
    • /
    • pp.9-12
    • /
    • 2016
  • Growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) are oocyte-specific growth factors that regulate many critical processes involved in early folliculogenesis and oocyte maturation. In this study, effects of GDF9 and BMP15 treatment during in vitro maturation of porcine oocytes upon development after parthenogenetic activation were investigated. Neither GDF, BMP15 alone nor in combination affects the number and viability of cumulus cells or the rates of oocyte maturation and blastocyst development. However, the treatment of GDF9 on porcine oocytes increased the number of trophectodermal (TE) cells of blastocysts derived from activated oocytes (P<0.05). The treatment of BMP15 increased the cell numbers of both inner cell mass (ICM) and TE cells (P<0.05). The treatment with the combination of GDF9 and BMP15 further increased the numbers of ICM and TE cells, compared with GDF9 or BMP15 treatment alone (P<0.05). In conclusion, the treatment of GDF9 or BMP15 (or both) enhanced the quality of blastocysts via the increased number of ICM and/or TE cells.