• Title/Summary/Keyword: Pig Chromosome 2

Search Result 49, Processing Time 0.032 seconds

Investigation of Single Nucleotide Polymorphisms in Porcine Chromosome 2 Quantitative Trait Loci for Meat Quality Traits

  • Do, K.T.;Ha, Y.;Mote, B.E.;Rothschild, M.F.;Choi, B.H.;Lee, S.S.;Kim, T.H.;Cho, B.W.;Kim, K.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.2
    • /
    • pp.155-160
    • /
    • 2008
  • Several studies have reported quantitative trait loci (QTL) for meat quality on porcine chromosome 2 (http://www.animalgenome.org/QTLdb/pig.html). For application of the molecular genetic information to the pig industry through marker-assisted selection, single nucleotide polymorphism (SNP) markers were analyzed by comparative re-sequencing of polymerase chain reaction (PCR) products of 13 candidate genes with DNA from commercial pig breeds such as Berkshire, Yorkshire, Landrace, Duroc and Korean Native pig. A total of 34 SNPs were identified in 15 PCR products producing an average of one SNP in every 253 bp. PCR restriction fragment length polymorphism (RFLP) assays were developed for 11 SNPs and used to investigate allele frequencies in five commercial pig breeds in Korea. Eight of the SNPs appear to be fixed in at least one of the five pig breeds, which indicates that different selection among pig breeds might be applied to these SNPs. Polymorphisms detected in the PTH, CSF2 and FOLR genes were chosen to genotype a Berkshire-Yorkshire pig breed reference family for linkage and association analyses. Using linkage analysis, PTH and CSF2 loci were mapped to pig chromosome 2, while FOLR was mapped to pig chromosome 9. Association analyses between SNPs in the PTH, CSF2 and FOLR suggested that the CSF2 MboII polymorphism was significantly associated with several pork quality traits in the Berkshire and Yorkshire crossed F2 pigs. Our current findings provide useful SNP marker information to fine map QTL regions on pig chromosome 2 and to clarify the relevance of SNP and quantitative traits in commercial pig populations.

A Study on the Methodology of Chromosome Preparation from Blood Culture (혈액세포를 이용한 염색체 분리 분석에 관한 방법적 고찰)

  • Sohn, S.H.;Chung, K.M.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.21 no.2
    • /
    • pp.207-214
    • /
    • 1994
  • This study was carried out to develop the methodology of chromosome preparation from blood cultures in mammals which included human, mouse, cattle and pig. For karyotyping, 0.5-5.0ml of peripheral blood were collected and cultured. The satisfactory results were obtained from macroculture and microculture in all species. In culture, the patterns of cell growth were no difference among media except serum concentration and mitogen supplement. The presence of mitogen and fetal bovine serum in medium significantly affected the mitotic index. The optimal culture condition was 37$^{\circ}C$ for 3 days. And the concentration of colcemid and reincubation time also affected the chromosome morphology. In harvest, chromosome patterns were mainly affected on hypotonic treatment which included treated time and temperature, dropwise of fixative solution, and drying after slide preparation.

  • PDF

G-, C-, and NOR-banding of Korean Native Pig Chromosomes (한국재래돼지의 G-, C-, 및 NOR-banding)

  • Sohn, S.H.;Kweon, O.S.;Baik, K.H.;Jung, W.;Cho, E.J.;Kang, M.Y.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.901-910
    • /
    • 2003
  • Using the G-, C-, and NOR-banding techniques, a karyotyping for Korean Native Pig was performed. Blood samples were collected from 50 male Korean Native Pigs that had been bred at the National Livestock Research Institute and then blood cells were prepared from in vitro cultures followed by karyotyping; G-, C-, and NOR-banding patterns of metaphase chromosomes were analyzed. The karyotype of Korean Native Pig is 38, XX or XY which consists of 5 pairs of submetacentric chromosomes(Group I), 2 pairs of acrocentric chromosomes with short p-arm(Group II), 5 pairs of medium metacentric chromosomes(Group III), 6 pairs of acrocentric chromosomes(Group IV) and metacentric X and Y sex chromosomes. On GTG-banding, the Korean Native Pig exhibited a typical and identical banding pattern in each homologous chromosomes. Overall chromosomal morphology and positions of typical landmarks of the Korean Native Pig were virtually identical to those of Committee for the Standardized Karyotype of the Domestic Pig(CSKDP). However, numbers of G-bands of the Korean Native Pig chromosomes were more than those of CSKDP. In chromosomes 1, 3, 5, 6, 7, 8, 13, 14, 15, 16, 17, 18 and X, the Korean Native Pig exhibited more separated bands as compared with CSKDP. In C-banding patterns, although the quantity of heterochromatin was variable in each chromosome, most of the Korean Native Pig chromosomes had heterochromatic C-bands on centromeres. However, the heterochromatic C-band was constantly observed on the whole Y chromosome. In AgNOR staining, the NORs were located at centromeres on the chromosomes 8 and 10. The number of NORs per metaphase ranged from 2 to 4 giving a mean value of 2.13. The number of NORs were distributed on all chromosome pair 10 but not on chromosome 8. The sizes of NORs were also differed between homologous chromosomes 8. Numbers of NORs of Korean Native Pig were significantly higher than those of Yorkshire. The pattern of pig NORs was polymorphic in breeds, individuals and cells, especially on chromosome 8.

Characterization of Quantitative Trait Loci (QTL) for Growth using Genome Scanning in Korean Native Pig

  • Lee, H.K.;Choi, I.S.;Choi, B.H.;Kim, T.H.;Jung, I.J.
    • Reproductive and Developmental Biology
    • /
    • v.28 no.2
    • /
    • pp.107-112
    • /
    • 2004
  • Molecular genetic markers were genotyped used to detect chromosomal regions which contain economically important traits such as growth traits in pigs. Three generation resource population was constructed from a cross between the Korean native boars and Landrace sows. A total of 193 F2 animals from intercross of F1 were produced. Phenotypic data on 7 traits, birth weight, body weight at 3, 5, 12, 30 weeks of age, live empty weight were collected for F2 animals. Animals including grandparents (F0), parents (F1), offspring (F2) were genotyped for 194 microsatellite markers covering from chromosome 1 to 18. Quantitative trait locus analyses were performed using interval mapping by regression under line-cross model. To characterize presence of imprinting, genetic full model in which dominance, additive and imprinting effect were included was fitted in this analysis. Significance thresholds were determined by permutation test. Using imprinting full model, four QTL with expression of imprinted effect were detected at 5% chromosome-wide significance level for growth traits on chromosome 1, 5, 7, 13, 14, and 16.

Molecular Characterization and Chromosomal Mapping of the Porcine AMP-activated Protein Kinase ${\alpha}2$ (PRKAA2) Gene

  • Lee, Hae-Young;Choi, Bong-Hwan;Lee, Jung-Sim;Jang, Gul-Won;Lee, Kyung-Tai;Chung, Ho-Young;Jeon, Jin-Tea;Cho, Byung-Wook;Lee, Jun-Heon;Kim, Tae-Hun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.5
    • /
    • pp.615-621
    • /
    • 2007
  • AMP-activated protein kinase alpha 2 (PRKAA2) plays a key role in regulation of fatty acid and cholesterol metabolism. This study investigated the porcine PRKAA2 gene as a positional candidate for intramuscular fat and backfat thickness traits in pig chromosome 6. A partial fragment of the porcine PRKAA2 gene, amplified by PCR, contained a putative intron 3 including a part of exon 3 and 4, comparable with that of human PRKAA2 gene. Within the fragment, several single nucleotide polymorphisms were identified using multiple sequence alignments. Of these, TaqI restriction enzyme polymorphism was used for genotyping various pig breeds including Korean reference family. Using linkage and physical mapping, the porcine PRKAA2 gene was mapped in the region between microsatellite markers SW1881 and SW1680 on chromosome 6. Allele frequencies were quite different among pig breeds. The full length cDNA of the porcine PRKAA2 (2,145 bp) obtained by RACE containing 1,656 bp open reading frame of deduced 552 amino acids, had sequence identities with PRKAA2 of human (98.2%), rat (97.8%), and mouse (97.5%). These results suggested that the porcine PRKAA2 is a positional candidate gene for fat deposition trait at near telomeric region of the long arm of SSC 6.

Pig large tumor suppressor 2 (Lats2), a novel gene that may regulate the fat reduction in adipocyte

  • Liu, Qiuyue;Gu, Xiaorong;Zhao, Yiqiang;Zhang, Jin;Zhao, Yaofeng;Meng, Qingyong;Xu, Guoheng;Hu, Xiaoxiang;Li, Ning
    • BMB Reports
    • /
    • v.43 no.2
    • /
    • pp.97-102
    • /
    • 2010
  • Clenbuterol, a $\beta_2$-adrenoceptor agonist, has been proven to be a powerful repartition agent that can decrease fat deposition. Based on results from our previous cDNA microarray experiment of pig clenbuterol administration, a novel up-regulated EST was full-length cloned (4859 bp encoding 1041 amino acids) and found to be the pig homolog of large tumor suppressor 2 (Lats2). We mapped pig Lats2 to chromosome 11p13-14 by using FISH, and western blotting demonstrated that pig Lats2 protein was most abundant in adipose. In Drosophila, Lats2 ortholog was reported as a key component of the Hippo pathway which regulates cell differentiation and growth. Here, we show that pig Lats2 exhibit inverted expression to YAP1, another member of the Hippo pathway which positively regulates cell growth and proliferation, during the differentiation of 3T3-L1 preadipocytes. Our results suggested that Lats2 may involve in Hippo pathway regulating the fat reduction by inhibiting adipocyte differentiation and growth.

Polymorphism in the intron 20 of porcine O-linked N-acetylglucosamine transferase

  • Kim, Jong Gug;Nonneman, Dan;Kim, Doo-Wan;Shin, Sangsu;Rohrer, Gary A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.8
    • /
    • pp.1086-1092
    • /
    • 2017
  • Objective: O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) catalyzes the addition of O-GlcNAc and GlcNAcylation has extensive crosstalk with phosphorylation to regulate signaling and transcription. Pig OGT is located near the region of chromosome X that affects follicle stimulating hormone level and testes size. The objective of this study was to find the variations of OGT between European and Chinese pigs. Methods: Pigs were tested initially for polymorphism in OGT among European and Chinese pigs by polymerase chain reaction and sequencing at the U.S. Meat Animal Research Center (USMARC). The polymorphism was also determined in an independent population of pigs including European and Chinese Meishan (ME) breeds at the National Institute of Animal Science (NIAS, RDA, Korea). Results: The intron 20 of OGT from European and Chinese pigs was 514 and 233 bp, respectively, in the pigs tested initially. They included 1 White composite (WC) boar and 7 sows ($2Minzu{\times}WC$, $2Duroc\;[DU]{\times}WC$, $2ME{\times}WC$, $1Fengzing{\times}WC$) at USMARC. The 281-bp difference was due to an inserted 276-bp element and GACTT in European pigs. When additional WC and ME boars, the grandparents that were used to generate the $1/2ME{\times}1/2WC$ parents, and the 84 boars of 16 litters from mating of $1/2ME{\times}1/2WC$ parents were analyzed, the breeds of origin of X chromosome quantitative trait locus (QTL) were confirmed. The polymorphism was determined in an independent population of pigs including DU, Landrace, Yorkshire, and ME breeds at NIAS. OGT was placed at position 67 cM on the chromosome X of the USMARC swine linkage map. Conclusion: There was complete concordance with the insertion in European pigs at USMARC and NIAS. This polymorphism could be a useful marker to identify the breed of origin of X chromosome QTL in pigs produced by crossbreeding Chinese and European pigs.

Mapping Quantitative Trait Loci for Meat Quality on Pig Chromosome 3, 4 and 7

  • Zuo, Bo;Xiong, YuanZhu;Su, YuHong;Deng, ChangYan;Zheng, Rong;Jiang, Siwen
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.3
    • /
    • pp.320-324
    • /
    • 2003
  • The objective of this study was to localize QTL affecting meat quality in a pig family of three generations. All animals were genotyped for twenty-four microsatellites on SSC3 (Sus scrofa chromosome 3), SSC4 and SSC7. One hundred and forty $F_2$ offsprings were scored for eleven meat quality traits. Least square regression interval mapping revealed quantitative trait loci (QTL) effect for meat pH (m. Semipinalis Capitis, SC) on SSC4 and SSC7; for moisture (m. Longissimus Dorsi, LD) on SSC3. Furthermore, there was suggestive evidence for a QTL on SSC4 affecting intramuscular fat (IMF) content that nearly approached the chromosomewise (p=0.05) significance threshold.

Characterization of QTL for Growth and Meat Quality in Combined Pig QTL Populations

  • Li, Y.;Choi, B.H.;Lee, Y.M.;Alam, M.;Lee, J.H.;Kim, K.S.;Baek, K.H.;Kim, J.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.12
    • /
    • pp.1651-1659
    • /
    • 2011
  • This study was conducted to detect quantitative trait loci (QTL) for thirteen growth and meat quality traits in pigs by combing QTL experimental populations. Two F2 reference populations that were sired by Korea native pig (KNP) and dammed by Landrace (LN) or Yorkshire (YK) were generated to construct linkage maps using 123 genetic markers (mostly microsatellites) and to perform QTL analysis on porcine chromosomes (SSCs) 1, 2, 3, 6, 7, 8, 9, 11, 13, 14, and 15. A set of line-cross models was applied to detect QTL, and a series of lack-of-fit tests between the models was used to characterize inheritance mode of QTL. A total of 23, 11 and 19 QTL were detected at 5% chromosome-wise level for the data sets of KNP${\times}$LN, KNP${\times}$YK cross and joint sets of the two cross populations, respectively. With the joint data, two Mendelian expressed QTL for live weight and cooking loss were detected on SSC3 and SSC15 at 1% chromosome-wise level, respectively. Another Mendelian expressed QTL was detected for CIE a on SSC7 at 5% genome-wise level. Our results suggest that QTL analysis by combining data from two QTL populations increase power for QTL detection, which could provide more accurate genetic information in subsequent marker-assisted selection.

Chromosome Aberrations in Porcine Embryo Produced by Nuclear Transfer with Somatic Cell

  • Ah, Ko-Seung;Jin, Song-Sang;Tae, Do-Jeong;Chung, Kil-Saeng;Lee, Hoon-Taek
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.73-73
    • /
    • 2002
  • Nuclear transfer (NT) techniques have advanced in the last years, and cloned animals have been produced by using somatic cells in several species including pig. However, it is difficult that the nuclear transfer porcine embryos development to blastocyst stage overcoming the cell block in vitro. Abnormal segregation of chromosomes in nuclear transferred embryos on genome activation stage bring about embryo degeneration, abnormal blastocyst, delayed and low embryo development. Thus, we are evaluated that the correlations of the frequency of embryo developmental rates and chromosome aberration in NT and In viかo fertilization (IVF) derived embryo. We are used for ear-skin-fibroblast cell in NT. If only karyotyping of embryonic cells are chromosomally abnormal, they may difficultly remain undetected. Then, we evaluate the chromosome aberrations, fluorescent in situ hybridization (FISH) with porcine chromosome 1 submetacentric specific DNA probe were excuted. In normal diploid cell nucleus, two hybridization signal was detected. In contrast, abnormal cell figured one or three over signals. The developmental rates of NT and IVF embryos were 55% vs 63%, 32% vs 33% and 13% vs 17% in 2 cell, 8 cell and blastocyst, respectively. When looking at the types of chromosome aberration, the detection of aneuploidy at Day 3 on the embryo culture. The percentage of chromosome aneuploidy of NT and IVF at 4-cell stage 40.0%, 31.3%, respectively. This result indicate that chromosomal abnormalities are associated with low developmental rate in porcine NT embryo. It is also suggest that abnormal porcine embryos produced by NT associated with lower implantation rate, increase abortion rate and production of abnormal fetuses.

  • PDF