• Title/Summary/Keyword: Pig Breeding

Search Result 282, Processing Time 0.024 seconds

SLA Homozygous Korean Native Pigs and Their Inbreeding Status Deduced from the Microsatellite Marker Analysis

  • Jung, Woo-Young;Lim, Hyun-Tae;Lim, Jae-Sam;Kim, Sung-Bok;Jeon, Jin-Tae;Lee, Jun-Heon
    • Journal of Animal Science and Technology
    • /
    • v.52 no.6
    • /
    • pp.451-457
    • /
    • 2010
  • The porcine MHC (Major Histocompatibility Complex), encoding the SLA (Swine Leukocyte Antigen) genes, is one of the most significant regions associated with immune rejection in relation to transplantation. In this study, three SLA class I (SLA-1, SLA-3, SLA-2) loci and three SLA class II (DRB1, DQB1, DQA) loci were investigated in the previously unidentified Korean native pig (KNP) population that was closely inbred in the Livestock Technology Research Station in Cheongyang, Korea. Total thirteen KNPs from four generations were genotyped for the SLA alleles and haplotypes were investigated using PCR-SSP (Sequence-Specific Primer) method. The results showed that all of these KNPs had Lr-56.30/56.30 homozygous haplotype, indicating high level of inbreeding in the SLA genes. The inbreeding status of these animals was also investigated using microsatellite (MS) markers. From the 50 MS markers investigated, 17 MS markers were fixed in all generations and the fixed alleles are increased as 26 loci for the fourth generation. Two MS markers, S0069 and SW173, were heterozygous for all the animals tested. Observed and expected heterozygosities were calculated and the average inbreeding coefficients for each generation were also calculated. In the fourth generation, the average inbreeding coefficients was 0.732 and this may increase with further inbreeding process. Analysis of the SLA haplotypes and MS alleles can give important information for breeding the pigs for xenotransplantation studies.

Integrated analysis of transcriptomic and proteomic analyses reveals different metabolic patterns in the livers of Tibetan and Yorkshire pigs

  • Duan, Mengqi;Wang, Zhenmei;Guo, Xinying;Wang, Kejun;Liu, Siyuan;Zhang, Bo;Shang, Peng
    • Animal Bioscience
    • /
    • v.34 no.5
    • /
    • pp.922-930
    • /
    • 2021
  • Objective: Tibetan pigs, predominantly originating from the Tibetan Plateau, have been subjected to long-term natural selection in an extreme environment. To characterize the metabolic adaptations to hypoxic conditions, transcriptomic and proteomic expression patterns in the livers of Tibetan and Yorkshire pigs were compared. Methods: RNA and protein were extracted from liver tissue of Tibetan and Yorkshire pigs (n = 3, each). Differentially expressed genes and proteins were subjected to gene ontology and Kyoto encyclopedia of genes and genomes functional enrichment analyses. Results: In the RNA-Seq and isobaric tags for relative and absolute quantitation analyses, a total of 18,791 genes and 3,390 proteins were detected and compared. Of these, 273 and 257 differentially expressed genes and proteins were identified. Evidence from functional enrichment analysis showed that many genes were involved in metabolic processes. The combined transcriptomic and proteomic analyses revealed that small molecular biosynthesis, metabolic processes, and organic hydroxyl compound metabolic processes were the major processes operating differently in the two breeds. The important genes include retinol dehydrogenase 16, adenine phosphoribosyltransferase, prenylcysteine oxidase 1, sorbin and SH3 domain containing 2, ENSSSCG00000036224, perilipin 2, ladinin 1, kynurenine aminotransferase 1, and dimethylarginine dimethylaminohydrolase 1. Conclusion: The findings of this study provide novel insight into the high-altitude metabolic adaptation of Tibetan pigs.

The identification of novel regions for reproduction trait in Landrace and Large White pigs using a single step genome-wide association study

  • Suwannasing, Rattikan;Duangjinda, Monchai;Boonkum, Wuttigrai;Taharnklaew, Rutjawate;Tuangsithtanon, Komson
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.12
    • /
    • pp.1852-1862
    • /
    • 2018
  • Objective: The purpose of this study was to investigate a single step genome-wide association study (ssGWAS) for identifying genomic regions affecting reproductive traits in Landrace and Large White pigs. Methods: The traits included the number of pigs weaned per sow per year (PWSY), the number of litters per sow per year (LSY), pigs weaned per litters (PWL), born alive per litters (BAL), non-productive day (NPD) and wean to conception interval per litters (W2CL). A total of 321 animals (140 Landrace and 181 Large White pigs) were genotyped with the Illumina Porcine SNP 60k BeadChip, containing 61,177 single nucleotide polymorphisms (SNPs), while multiple traits single-step genomic BLUP method was used to calculate variances of 5 SNP windows for 11,048 Landrace and 13,985 Large White data records. Results: The outcome of ssGWAS on the reproductive traits identified twenty-five and twenty-two SNPs associated with reproductive traits in Landrace and Large White, respectively. Three known genes were identified to be candidate genes in Landrace pigs including retinol binding protein 7, and ubiquitination factor E4B genes for PWL, BAL, W2CL, and PWSY and one gene, solute carrier organic anion transporter family member 6A1, for LSY and NPD. Meanwhile, five genes were identified to be candidate genes in Large White, two of which, aldehyde dehydrogenase 1 family member A3 and leucine rich repeat kinase 1, associated with all of six reproduction traits and three genes; retrotransposon Gag like 4, transient receptor potential cation channel subfamily C member 5, and LHFPL tetraspan subfamily member 1 for five traits except W2CL. Conclusion: The genomic regions identified in this study provided a start-up point for marker assisted selection and estimating genomic breeding values for improving reproductive traits in commercial pig populations.

Genetic association between sow longevity and social genetic effects on growth in pigs

  • Hong, Joon Ki;Kim, Yong Min;Cho, Kyu Ho;Cho, Eun Seok;Lee, Deuk Hwan;Choi, Tae Jeong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.8
    • /
    • pp.1077-1083
    • /
    • 2019
  • Objective: Sow longevity is important for efficient and profitable pig farming. Recently, there has been an increasing interest in social genetic effect (SGE) of pigs on stress-tolerance and behavior. The present study aimed to estimate genetic correlations among average daily gain (ADG), stayability (STAY), and number of piglets born alive at the first parity (NBA1) in Korean Yorkshire pigs, using a model including SGE. Methods: The phenotypic records of ADG and reproductive traits of 33,120 and 11,654 pigs, respectively, were evaluated. The variances and (co) variances of the studied traits were estimated by a multi-trait animal model applying the Bayesian with linear-threshold models using Gibbs sampling. Results: The direct and SGEs on ADG had a significantly negative (-0.30) and neutral (0.04) genetic relationship with STAY, respectively. In addition, the genetic correlation between the social effects on ADG and NBA1 tended to be positive (0.27), unlike the direct effects (-0.04). The genetic correlation of the total effect on ADG with that of STAY was negative (-0.23) but non-significant, owing to the social effect. Conclusion: These results suggested that total genetic effect on growth in the SGE model might reduce the negative effect on sow longevity because of the growth potential of pigs. We recommend including social effects as selection criteria in breeding programs to obtain satisfactory genetic changes in both growth and longevity.

Coping with large litters: the management of neonatal piglets and sow reproduction

  • Peltoniemi, Olli;Yun, Jinhyeon;Bjorkman, Stefan;Han, Taehee
    • Journal of Animal Science and Technology
    • /
    • v.63 no.1
    • /
    • pp.1-15
    • /
    • 2021
  • As a result of intensive breeding, litter size has considerably increased in pig production over the last three decades. This has resulted in an increase in farrowing complications. Prolonged farrowing will shorten the window for suckling colostrum and reduce the chances for high-quality colostrum intake. Studies also agree that increasing litter sizes concomitantly resulted in decreased piglet birth weight and increased within-litter birth weight variations. Birth weight, however, is one of the critical factors affecting the prognosis of colostrum intake, and piglet growth, welfare, and survival. Litters of uneven birth weight distribution will suffer and lead to increased piglet mortality before weaning. The proper management is key to handle the situation. Feeding strategies before farrowing, management routines during parturition (e.g., drying and moving piglets to the udder and cross-fostering) and feeding an energy source to piglets after birth may be beneficial management tools with large litters. Insulin-like growth factor 1 (IGF-1)-driven recovery from energy losses during lactation appears critical for supporting follicle development, the viability of oocytes and embryos, and, eventually, litter uniformity. This paper explores certain management routines for neonatal piglets that can lead to the optimization of their colostrum intake and thereby their survival in large litters. In addition, this paper reviews the evidence concerning nutritional factors, particularly lactation feeding that may reduce the loss of sow body reserves, affecting the growth of the next oocyte generation. In conclusion, decreasing birth weight and compromised immunity are subjects warranting investigation in the search for novel management tools. Furthermore, to increase litter uniformity, more focus should be placed on nutritional factors that affect IGF-1-driven follicle development before ovulation.

A Case Study on Smart Livestock with Improved Productivity after Information and Communications Technologies Introduction

  • Kim, Gok Mi
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.177-182
    • /
    • 2021
  • The fourth industrial revolution based on information and communication technology (ICT) becomes the center of society, and the overall industrial structure is also changing significantly. ICT refers to the hardware of information devices and the software technologies required for the operation and information management of these devices, and any means of collecting, producing, processing, preserving, communicating and utilizing them. ICT is integrated into industries and services or combined with new technologies in various fields such as robotics and nanotechnology to connect all products and services to the network. The development of ICT, which continuously creates new products and services, has spread to all sectors of the industry, affecting not only daily life but also the livestock sector recently. In agriculture, ICT technology can reduce production costs by efficiently managing labor and energy because it can improve quality and yield based on data on environmental and growth information such as temperature, humidity, light and soil. In particular, smart livestock is considered suitable for achieving livestock management goals because it can reduce labor force and improve productivity by remotely and automatically managing accurate information necessary for raising and breeding livestock with ICT devices. The purpose of this study is to propose the need for ICT technology by comparing farm productivity before and after ICT is introduced. The method of the study is to compare the productivity before and after the introduction of ICT in Korean beef farms, pig farms, and poultry farms. The effectiveness of the study proved the excellence of ICT technology through the production results before ICT introduction and the productivity improvement case of livestock farms that efficiently operated manpower management and reduced labor force after ICT introduction. The conclusion of this paper is to present the need for smart livestock through ICT adoption through case study results.

Establishment of normal reference intervals in serum biochemical parameters of domestic sows in Korea

  • Kim, Dongyub;Kim, Hwan-Deuk;Son, Youngmin;Kim, Sungho;Jang, Min;Bae, Seul-Gi;Yun, Sung-Ho;Kim, Seung-Joon;Lee, Won-Jae
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.261-269
    • /
    • 2021
  • Because sows are industrially vital for swine production, monitoring for their health or disorder status is important to ensure high reproductive performance. Especially, ambient temperature changes in different season, especially during summer, are directly influenced to the reproductive performance of sows. Although the serum biochemical parameters are widely applied in the veterinary medicine with wide ranges for the physiological process, the values are also influenced by several factors such as age, breed, gender, and stress. In addition, domestic sows in Korea-specific reference interval (RI) for serum biochemistry has not been established yet. Therefore, the present study was aimed to evaluate seasonal variation of RIs in the serum biochemistry in domestic sows in Korea at different seasons and to establish normal RIs using a RI finding program (Reference Value Advisor). Significant difference (p < 0.05) on the different seasons were identified in several serum biochemical parameters including BUN, CRE, GGT, GLU, ALB, TP, LDH and Na in sows. Therefore, we further established RIs, specific in domestic sows in Korea regardless of season. The established RIs based on the serum biochemical values provide a baseline for interpreting biochemical results in the domestic sows in Korea, regardless of seasonal effect. It may contribute to develop a strategy for better reproductive performance by improving breeding management practice and evaluating health of pig herds, which facilitate to avert the economic loss in summer infertility in sows.

Genetic parameter analysis of reproductive traits in Large White pigs

  • Yu, Guanghui;Wang, Chuduan;Wang, Yuan
    • Animal Bioscience
    • /
    • v.35 no.11
    • /
    • pp.1649-1655
    • /
    • 2022
  • Objective: The primary objective of this study was to determine the genetic parameters for reproductive traits among Large White pigs, including the following traits: total number born (TNB), number born alive (NBA), litter birth weight (LBW), average birth weight (ABW), gestation length (GL), age at first service (AFS) and age at first farrowing (AFF). Methods: The dataset consisted of 19,036 reproductive records from 4,986 sows, and a multi-trait animal model was used to estimate genetic variance components of seven reproductive traits. Results: The heritability estimates for these reproductive traits ranged from 0.09 to 0.26, with the highest heritability for GL and AFF, and the lowest heritability for NBA. The repeatabilities for TNB, NBA, LWB, ABW, and GL were ranged from 0.16 to 0.34. Genetic and phenotypic correlations ranged from -0.41 to 0.99, and -0.34 to 0.98, respectively. In particular, the correlations between TNB, NBA and LBW, between AFS and AFF, exhibited a strong positive correlation. Furthermore, for TNB, NBA, LBW, ABW, and GL, genetic correlations of the same trait between different parities were moderately to strongly correlated (0.32 to 0.97), and the correlations of adjacent parities were higher than those of nonadjacent parities. Conclusion: All the results in the present study can be used as a basis for the genetic assessment of the target population. In the formulation of dam line selection index, AFS or AFF can be considered to combine with TNB in a multiple trait swine breeding value estimation system. Moreover, breeders are encouraged to increase the proportion of sows at parity 3-5 and reinforce the management of sows at parity 1 and parity ≥8.

Prevalence of Senecavirus A in pigs from 2014 to 2020: a global systematic review and meta-analysis

  • Xuhua Ran;Zhenru Hu;Jun Wang ;Zhiyuan Yang ;Zhongle Li ;Xiaobo Wen
    • Journal of Veterinary Science
    • /
    • v.24 no.3
    • /
    • pp.48.1-48.13
    • /
    • 2023
  • Background: Senecavirus A (SVA), a member of the family Picornaviridae, is newly discovered, which causes vesicular lesions, lameness in swine, and even death in neonatal piglets. SVA has rapidly spread worldwide in recent years, especially in Asia. Objectives: We conducted a global meta-analysis and systematic review to determine the status of SVA infection in pigs. Methods: Through PubMed, VIP Chinese Journals Database, China National Knowledge Infrastructure, and Wanfang Data search data from 2014 to July 26, 2020, a total of 34 articles were included in this analysis based on our inclusion criteria. We estimated the pooled prevalence of SVA in pigs by the random effects model. A risk of bias assessment of the studies and subgroup analysis to explain heterogeneity was undertaken. Results: We estimated the SVA prevalence to be 15.90% (1,564/9,839; 95% confidence interval [CI], 44.75-65.89) globally. The prevalence decreased to 11.06% (945/8,542; 95% CI, 28.25-50.64) after 2016. The highest SVA prevalence with the VP1-based RT-PCR and immunohistochemistry assay was 58.52% (594/1,015; 95% CI, 59.90-83.96) and 85.54% (71/83; 95% CI, 76.68-100.00), respectively. Besides, the SVA prevalence in piglet herds was the highest at 71.69% (119/166; 95% CI, 68.61-98.43) (p < 0.05). Moreover, our analysis confirmed that the subgroups, including country, sampling year, sampling position, detected gene, detection method, season, age, and climate, could be the heterogeneous factors associated with SVA prevalence. Conclusions: The results indicated that SVA widely exists in various countries currently. Therefore, more prevention and control policies should be proposed to enhance the management of pig farms and improve breeding conditions and the environment to reduce the spread of SVA.

Estimation of genetic parameters for pork belly traits

  • Seung-Hoon Lee;Sang-Hoon Lee;Hee-Bok Park;Jun-Mo Kim
    • Animal Bioscience
    • /
    • v.36 no.8
    • /
    • pp.1156-1166
    • /
    • 2023
  • Objective: Pork belly is a cut of meat with high worldwide demand. However, although the belly is comprised of multiple muscles and fat, unlike the loin muscle, research on their genetic parameters has yet to focus on a representative cut. To use swine breeding, it is necessary to estimate heritability against pork belly traits. Moreover, estimating genetic correlations is needed to identify genetic relationship among the traditional carcass and meat quality traits. This study sought to estimate the heritability of the carcass, belly, and their component traits, as well as the genetic correlations among them, to confirm whether these traits can be improved. Methods: A total of 543 Yorkshire pigs (406 castrated males and 137 females) from 49 sires and 244 dam were used in this study. To estimate genetic parameters, a total of 12 traits such as lean meat production ability, meat quality and pork belly traits were chosen. The heritabilities were estimated by using genome-wide efficient mixed model association software. The statistical model was selected so that farm, carcass weight, sex, and slaughter season were fixed effects. In addition, its genetic parameters were calculated via MTG2 software. Results: The heritability estimates for the 7th belly slice along the whole plate and its components were low to moderate (0.07±0.07 to 0.33±0.07). Moreover, the genetic correlations among the carcass and belly traits were moderate to high (0.28±0.20 to 0.99±0.31). Particularly, the rectus abdominis muscle exhibited a high absolute genetic correlation with the belly and meat quality (0.73±52 to 0.93±0.43). Conclusion: A moderate to high correlation coefficient was obtained based on the genetic parameters. The belly could be genetically improved to contain a larger proportion of muscle regardless of lean meat production ability.