• 제목/요약/키워드: Piezoelectric planer coupling factor

검색결과 2건 처리시간 0.022초

고에너지 볼 밀링을 이용한 (K0.44Na0.52)(Nb0.86Ta0.10)-0.04LiSbO3 무연 압전 세라믹스의 특성 (Effects of High Energy Ball Milling on the Piezoelectric Properties of Lead-free (K0.44Na0.52)(Nb0.86Ta0.10)-0.04LiSbO3 Ceramics)

  • 김영혁;허대영;태원필;이재신
    • 한국세라믹학회지
    • /
    • 제45권6호
    • /
    • pp.363-367
    • /
    • 2008
  • Lead-free $(K_{0.44}Na_{0.52})(Nb_{0.86}Ta_{0.10})-0.04LiSbO_3$ piezoelectric ceramics have been synthesized by conventional sintering process and then investigated on the sintering and piezoelectric properties by high energy ball milling (HEBM) treatment. The powders milled for different time are characterized by XRD, FE-SEM. The powders are pressed into a pellet and sintered. It is found that the piezoelectric properties of sintered specimens are strongly dependent on the milling time. The piezoelectric properties are enhanced by high energy ball milling treatment. The planer electromechanical coupling factor ($k_p$) and piezoelectric constant ($d_{33}$) of a specimen sintered at $1050^{\circ}C$ are 0.44 and 267 pC/N, respectively.

Na/K 비 변화에 따른 무연 [Li0.04(NayK1-y)0.96](Nb0.86Ta0.1Sb0.04)O3 세라믹스의 압전 및 유전특성 (Piezoelectric and Dielectric Characteristics of Lead Free [Li0.04(NayK1-y)0.96](Nb0.86Ta0.1Sb0.04)O3 Ceramics with the Variations of Na/K Ratio)

  • 이갑수;류주현;홍재일;이석태;김용운;정회승
    • 한국전기전자재료학회논문지
    • /
    • 제20권1호
    • /
    • pp.25-30
    • /
    • 2007
  • In this paper, lead-free [$Li_{0.04}(Na_{y}K_{1-y})_{0.96}](Nb_{0.86}Ta_{0.1}Sb_{0.04})O_{3}$ (y=0.4 - 0.58) ceramics were manufactured using conventional miked oxide method for acoustic emission(AE) sensor application and their dielectric and piezoelectric properties were investigated with the variations of Na/K ratio. The samples in the composition Na/K=54/46 exhibited excellent electrical properties of $d_{33}=300$ PC/N and kp=0.49. Taking into consideration above piezoelectric properties, it can be concluded that the [$Li_{0.04}(Na_{y}K_{1-y})_{0.96}](Nb_{0.86}Ta_{0.1}Sb_{0.04})O_{3}$ system ceramics are the promising lead-free materials capable of substituting PZT system ceramics.