• Title/Summary/Keyword: Piezoelectric damping

Search Result 152, Processing Time 0.027 seconds

The Vibration Control of a Opened Box Structure By a Neuro-Controller (신경망 제어기를 이용한 열린 박스 구조물의 진동 제어)

  • 신윤덕;장승익;기창두
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.983-987
    • /
    • 2003
  • Vibration causes noise and makes structure unstable. Especially, due to the effort of lightening, deformation of flexible structure is increased in its shape. Just a little disturbance causes vibration and low damping ratio causes residual vibration lasts long time. In this paper, by using a neuro-controller, which is one of the algorithm of adaptive control. we performed adaptive control of flexible cantilever plate and opened box structure with piezoelectric materials. The proposed adaptive vibration control algorithm, a neuro-controller, is proved in its effectiveness by applying to a opened box structure. The neuro-controller was implemented with DSP, and the real-time adaptive vibration control experiment results confirm that neuro-controller is reliable.

  • PDF

Active Vibration Control of a Beam Structure Using Hybrid Mount (하이브리드마운트를 이용한 빔 구조물의 능동진동제어)

  • 김승환;홍성룡;최승복
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.7
    • /
    • pp.524-531
    • /
    • 2003
  • This paper presents an active vibration control of a flexible beam structure using a hybrid mount which consists of elastic rubber and Piezoelectric material. After identifying stiffness and damping properties of the rubber and piezoelectric elements, a mechanical model of the hybrid mount is established. The mount model is then Incorporated into the beam structure, and the governing equation of motion is obtained in a state space. A sliding mode controller is designed in order to actively attenuate the vibration of the beam structure subjected to high frequency and small magnitude excitations. The controller is experimentally realized and control responses such as acceleration of the beam structure and force transmission through the hybrid mount are evaluated. In addition. a comparative work is done between the passive and hybrid mount systems.

Development of the Active Vibration Absorber Using Piezoelectric Actuators (압전세라믹을 이용한 능동진동제어장치의 개발)

  • Kwak, Myung-Hoon;Heo, Seok;Kwak, Moon-K
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.476-481
    • /
    • 2001
  • This research is concerned with development of the active vibration absorber using piezoelectric actuators. This active isolation system consists of a-pairs of PZT actuators bonded on a S-shaped aluminum plate and the passive damping material. The active system is connected to the passive system in series. In this paper, one of the popular control techniques which have been successfully applied to the smart structure is the Positive Position Feedback(PPF) control. The digital PPF control lows downloaded to the DSP chip and a main program, which runs SISO PPF algorithm. The structure and dynamic characteristics of the proposed active vibration isolation system and described in detail. To demonstate the effectiveness of the active vibration control, the PPF controller is first employed. Experimental results show that the active vibration isolation is possible by means of the proposed system.

  • PDF

Active Vibration Control of a Opened Box Structure By a Model Reference Neuro-Controller (모델기반 신경망 제어기를 이용한 열린 박스 구조물의 진동제어)

  • Jang, Seung-Ik;Shen, Yun-De;Kee, Chang-Doo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1602-1607
    • /
    • 2003
  • Vibration causes noise and sometimes makes structure unstable. Especially, due to the efforts of lightening, deformation of flexible structure is increased in its shape. Just a little disturbance can cause vibration and low damping ratio makes residual vibration last long time. This research is concerned with the model reference neuro-controller design for the vibration suppression of smart structures. By using a model reference neurocontroller, which is one of the algorithms of adaptive control, we performed an adaptive control of flexible cantilever plate and opened box structure with piezoelectric materials. The proposed adaptive vibration control algorithm, a model reference neuro-controller, was proved in its effectiveness by applying to an opened box structure. The model reference neuro-controller is implemented with DSP, and the real-time adaptive vibration control experiment results confirm that the model reference neuro-controller is reliable.

  • PDF

System Identification for Active Vibration control (능동 진동제어를 위한 시스템 동정)

  • 송철기;황진권;최종호;이장무
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.397-401
    • /
    • 1994
  • This paper proposes an identification method for a thin plate where multiple actuators and sensors are bonded. Since a thin plate has small damping ratios of all modes, each mode can be identified seperately with a bandpass filter for each modal signal. With the bandpass filter and the characteristics of the plate, the Multi-Input Multi-Output (MIMO) model of the plate can be converted to several Multi-Input Single-Output(MISO) models of second order linear difference equations of the modes. Parameters for each mode are obtained by using the Least Square method. Form there MISO models, the MIMO model is obtained in the form of the state space. Experiments were performed for an all-clamped plate with two pairs of piezoelectric actuators and sensors. The outputs of the identified model and the experimental data match well.

  • PDF

Vibration Control of Rotating Composite Thin-Walled Pretwisted Beam with Non-uniform Cross Section (초기 비틀림각을 갖는 비균일 박판보 블레이드의 진동제어)

  • 임성남;나성수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.944-949
    • /
    • 2003
  • This paper addresses the control of free and dynamic response of composite rotating pretwisted blade modeled as non-uniform thin-walled beam fixed at the certain presetting and pretwisted angle and incorporating piezoelectric induced damping capabilities. A distributed piezoelectric actuator pair is used to suppress the vibrations caused by external disturbances. The blade model incorporates non-uniform features such as transverse shear, secondary warping and includes the centrifugal and Coriolis force field. A velocity feedback control law relating the piezoelectiriccally induced transversal bending moment at the beam tip with the appropriately selected kinematical response quantity is used and the beneficial effects upon the closed loop eigenvibration and dynamic characteristics of the blade are highlighted.

  • PDF

Multiobjective State-Feedback Control of Beams with Piezoelectric Device (압전체가 부착된 보의 다목적 상태궤한제어)

  • Park, Chul-Hue;Hong, Seong-Il;Park, Hyun-Chul
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.828-833
    • /
    • 2004
  • The performance of a mixed $H_{\infty}/H_2$ design with pole placement constraints based on robust vibration control for a piezo/beam system is investigated. The governing equation of motion for the piezo/beam system is derived by Hamilton's principle. The assumed mode method is used to discretize the governing equation into a set of ordinary differential equation. A robust controller is designed by $H_{\infty}/H_2$ feedback control law that satisfies additional constraints on the closed-loop pole location in the face of model uncertainties, which are derived for a general class of convex regions of the complex plane. These constraints are expressed in terms of linear matrix inequalities (LMIs) approach for the multiobjective synthesis. The validity and applicability of this approach for vibration suppressions of SMART structural systems are discussed by damping out the multiple vibrational modes of the piezo/beam system.

  • PDF

Precision Position Controller Design for a 6-DOF Stage with Piezoelectric Actuators and Lever Linkages Based on Nonlinearity Estimation (압전 구동기와 레버 링키지를 이용한 6 자유도 스테이지의 비선형성 평가에 기초한 정밀 위치 제어기의 설계)

  • Moon, Jun-Hee;Lee, Bong-Gu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1045-1053
    • /
    • 2009
  • Precision stages for 6-DOF positioning, actuated by PZT stacks, which are fed back by gap sensors and guided by flexure hinges, have enlarged their application territory in micro/nano manufacturing and measurement area. The precision stages inherently have such limitations as the nonlinearity between input and output in piezoelectric stacks, feedback signal noise in precision capacitive gap sensors and low material damping in precision kinematic linkages of mechanical flexures. To surmount these limitations, the precision stage is modeled with physics-based variables, which are identified by transient response correspondence, and a gain margin calculation algorithm using the Prandtl-Ishlinskii model and describing function is newly developed to assess system performance more precisely than linear controller design schemes. Based on such analyses, a precision positioning controller is designed. Excellent positioning accuracy with rapid settlement accomplished by the controller is shown in step responses of the closed-loop system.

Pulsating fluid induced dynamic stability of embedded viscoelastic piezoelectric separators using different cylindrical shell theories

  • Pour, H. Rahimi;Arani, A. Ghorbanpour;Sheikhzadeh, Gh.
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.499-512
    • /
    • 2017
  • This paper deals with nonlinear dynamic stability of embedded piezoelectric nano-composite separators conveying pulsating fluid. For presenting a realistic model, the material properties of structure are assumed viscoelastic based on Kelvin-Voigt model. The separator is reinforced with single-walled carbon nanotubes (SWCNTs) which the equivalent material properties are obtained by mixture rule. The separator is surrounded by elastic medium modeled by nonlinear orthotropic visco Pasternak foundation. The separator is subjected to 3D electric and 2D magnetic fields. For mathematical modeling of structure, three theories of classical shell theory (CST), first order shear deformation theory (FSDT) and sinusoidal shear deformation theory (SSDT) are applied. The differential quadrature method (DQM) in conjunction with Bolotin method is employed for calculating the dynamic instability region (DIR). The detailed parametric study is conducted, focusing on the combined effects of the external voltage, magnetic field, visco-Pasternak foundation, structural damping and volume percent of SWCNTs on the dynamic instability of structure. The numerical results are validated with other published works as well as comparing results obtained by three theories. Numerical results indicate that the magnetic and electric fields as well as SWCNTs as reinforcer are very important in dynamic instability analysis of structure.

Application and Verification of Fully-Integrated Design Environment for Piezoelectric Energy Harvester (압전형 에너지 수확장치를 위한 통합 해석환경의 적용 및 검증)

  • Liu, Jian;Welham, Chris;Han, Seungoh
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.364-368
    • /
    • 2013
  • Vibrational energy harvester based on piezoelectricity has been expected to be the dominant energy harvesting technology due to the advantages of high conversion efficiency, light weight and small size, night operation, etc. Its commercialization is just around the corner but the integration with power management electronics should be solved in advance. In this paper, therefore, fully-integrated design environment for piezoelectric energy harvesting systems is presented to assist co-design with the power management electronics. The proposed design environment is capable of analyzing the energy harvester including the package-induced damping effects and simulating the device and its power management electronics simultaneously. When the developed design environment was applied to the fabricated device, the simulated resonant frequency matched well with the experimental result with a difference of 2.97% only. Also, the complex transient response was completed in short simulation time of 3,001 seconds including the displacement distribution over the device geometry. Furthermore, a full-bridge power management circuit was modeled and simulated with the energy harvester simultaneously. Therefore the proposed, fully-integrated design environment is accurate and fast enough for the contribution on successful commercialization of piezoelectric energy harvester.