• Title/Summary/Keyword: Piezoelectric d constant

Search Result 223, Processing Time 0.025 seconds

Piezoelectric and Dielectric Properties of Low Temperature Sintering Pb(Zn1/2W1/2)O3-Pb(Mn1/3Nb2/3)O3-Pb(Zr,Ti)O3 Ceramics

  • Yoo, Ju-Hyun;Lee, Kab-Soo;Lee, Su-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.3
    • /
    • pp.91-95
    • /
    • 2008
  • In this study, in order to develop the composition ceramics for low loss multilayer piezoelectric actuator application, $Pb(Zn_{1/2}W_{1/2})O_3-Pb(Mn_{1/3}Nb_{2/3})O_3-Pb(Zr,Ti)O_3$ (abbreviated as PZW-PMN-PZT)ceramics according to the amount of $MnO_2$ addition were fabricated using two-stage calcinations method. And also, their dielectric and piezoelectric properties were investigated. At the 0.2 wt% $MnO_2$ added PZW-PMN-PZT ceramics sintered at $930^{\circ}C$, density, electromechanical coupling factor $k_p$, dielectric constant ${\varepsilon}_r$, piezoelectric $d_{33}$ constant and mechanical quality factor $Q_m$ showed the optimum value of $7.84g/cm^3$, 0.543, 1,392, 318.7 pC/N, 1,536, respectively for low loss multilayer ceramics actuator application.

Piezoelectric and dielectric properties of PMN-PZN ceramics for multilayer piezoelectric transformer with PZN substitution (PZN 치환에 따른 적층 압전변압기용 PMN-PZT 세라믹의 압전 및 유전 특성)

  • Lee, Chang-Bae;Yoo, Ju-Hyun;Paik, Dong-Soo;Im, In-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.59-61
    • /
    • 2005
  • In this paper, in order to develop the low temperature sintering ceramics for multilayer piezoelectric transformer, $Pb[(Mn_{1/3},Nb_{2/3})_{0.07}(Zn_{1/3}Nb_{2/3})_a(Zr_{0.48}Ti_{0.52})_{1-0.07-a}O_3]$ ceramics were manufactured with the variations of PZN from 2 to 14mol% and their dielectric and piezoelectric properties were investigated. Sintering temperature was varied from 910 to $1000^{\circ}C$. At 8mol% PZN substituted specimen sintered at $970^{\circ}C$, electromechanical coupling factor(kp), mechanical quality factor(Qm), dielectric constant and peizoelectric constant($d_{33}$) showed the optimal values of 0.536, 1803, 1551 and 328[pC/N), respectively, for multilayer piezoelectric transformer application.

  • PDF

Effects of $La_2O_3$, $MnO_2$ on the Dielectric and Piezoelectric Properties of $0.02Pb(Y_{2/3}W_{1/3}O_3-0.98Pb(Zr_{0.52}Ti_{0.48})O_3$ ($La_2O_3$$MnO_2$$0.02Pb(Y_{2/3}W_{1/3}O_3-0.98Pb(Zr_{0.52}Ti_{0.48})O_3$의 유전 및 압전 특성에 미치는 영향)

  • 윤석진;류소연;문종하;김현재;오상록;이종원;정형진
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.3
    • /
    • pp.378-384
    • /
    • 1995
  • Effects of $La_2O_3$, $MnO_2$ on the dielectric and piezoelectric properties of $0.02Pb(Y_{2/3}W_{1/3}O_3-0.98Pb(Zr_{0.52}Ti_{0.48})O_3$ system were investigated. The addition of La2O3 to the system enhanced electromechanical coupling factor (kp), piezoelectric constant (d33), but hardly changed mechanical quality factor (Qm). On the other hand, the addition of $MnO_2$ increased Qm significantly, but did not degrade kp and d33 so much. The piezoelectric properties of $0.02Pb(Y_{2/3}W_{1/3}O_3-0.98Pb(Zr_{0.52}Ti_{0.48})O_3$ containing 0.1wt% $La_2O_3$, 0.4wt% $MnO_2$ were very good and kp, d33, Qm were 55%, 350$\times$10-12C/N, 780, respectively. The size of the grains was proportional to the change of c/a (tetragonality) ratio caused by the addition of $La_2O_3$ and $MnO_2$, and dielectric, piezoelectric properties were sensitive to the amountof pyrochrole phase.

  • PDF

The Piezoelectric Properties of (Na0.5K0.5)NbO3-K5.4Cu1.3Ta10O29 Ceramics with Various K5.4Cu1.3Ta10O29 Doping and Sintering Temperatures

  • Yoon, Jung Rag;Lee, Chang-Bae;Lee, Serk Won;Lee, Heun-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.6
    • /
    • pp.283-286
    • /
    • 2012
  • (1-X)$(Na_{0.5}K_{0.5})NbO_3-XK_{5.4}Cu_{1.3}Ta_{10}O_{29}$ (NKN-KCT) lead-free piezoelectric ceramics have been synthesized by the conventional solid state sintering method, and their sinterability and piezoelectric properties were investigated. Typically, this material is sintered between 1,025 and $1,100^{\circ}C$ for 2 hours to achieve the required densification. Crystalline structures and Microstructures were analyzed by X-ray diffraction and scanning electron microscope. The density, dielectric constant (${\varepsilon}_r$), piezoelectric constant $d_{33}$, electromechanical coupling factor $k_p$ and mechanical quality factor $Q_m$ value of the NKN ceramics depended upon the KCT content and the sintering temperature. In particular, the KCT addition to NKN greatly improved the mechanical quality factor $Q_m$ value. The ceramic with X = 1.0 mol% sintered at $1,050^{\circ}C$ exhibited optimum properties (${\varepsilon}_r$=246, $d_{33}$=95, $k_p$=0.38 and $Q_m$=1,826). These results indicate that the ceramic is a promising candidate material for applications in lead free piezoelectric transformer and filter materials.

Piezoelectric and Dielectric Properties of NKN-(1-x)BNT-xBT Ceramics (NKN-(1-x)BNT-xBT 세라믹스의 압전 및 유전특성)

  • Lee, Seung-Hwan;Nam, Sung-Pill;Lee, Sung-Gap;Lee, Young-Hie
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.10
    • /
    • pp.771-775
    • /
    • 2010
  • In this study, piezoelectric and dielectric properties of the $(Na_{0.5}K_{0.5})NbO_3-(1-x)(Bi_{0.5}Na_{0.5})TiO_3-xBaTiO_3$ [NKN-(1-x)BNT-xBT] ceramics were investigated. The lead-free NKN-(1-x)BNT-xBT ceramics were fabricated by a conventional mixed oxide method. The results indicate that the addition of $BaTiO_3$ significantly influences the sintering, microstructure, phase transition and electrical properties of NKN-BNT ceramics. A gradual change in the piezoelectric and dielectric properties was observed with the increase of BT contents. The dielectric constant, piezoelectric constant ($d_{33}$) and electromechanical coupling factor ($k_p$) increased at the morphotropic phase boundary (MPB). The $d_{33}$=184 pC/N, $k_p$=0.38, dielectric constant=1455 with dielectric loss value of less than 1% were obtained for the NKN-0.95BNT-0.05BT ceramics sintered at $1150^{\circ}C$ for 2h. These results demonstrate that the NKN-(1-x)BNT-xBT ceramics is an attractive candidate for lead-free piezoelectric materials.

Piezoelectric and Dielectric Characteristics of Low Loss Low Temperature Sintering PMN-PNN-PZT Ceramics with the amount of PNN Substitution (PNN 치환량에 따른 저손실 저온소결 PMN-PNN-PZT 세라믹스의 압전 및 유전특성)

  • Yoo, Ju-Hyun;Kim, Kook-Jin;Jeong, Yeong-Ho;Lee, Su-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.9
    • /
    • pp.766-770
    • /
    • 2007
  • In this study, in order to develop low temperature sintering ceramics for multilayer piezoelectric actuator, $0.07Pb(Mn_{1/3}Nb_{2/3})O_3-xPb(Ni_{1/3}Nb_{2/3})O_3-(0.93-x)Pb(Zr,Ti)O_3$ ceramics system were fabricated using $Li_2CO_3-Bi_2O_3-CuO$ sintering aids and the specimens were sintered at $930^{\circ}C$. Thereafter, their piezoelectric and dielectric characteristics were investigated according to the amount of PNN substitution. At 9 mol% PNN substitution, density, electromechanical coupling factor ($k_p$), dielectric constant, mechanical quality factor ($Q_m$) and piezoelectric constant ($d_{33}$) showed the optimum value of $7.86g/cm^3$, 0.60, 1640, 1323 and 387 pC/N, respectively. It is considered that these values are suitable for piezoelectric divece application such ad multilayer piezoelectric actuator and ultrasonic vibrator with pure Ag internal electrode.

Enhancement in Piezoelectric Properties of PZT-Based Ceramics by High Energy Ball-Milling Treatment of Solid-State Synthesized Powders

  • Kim, Dae-Uk;Lee, Han-Bok;Hung, Nguyen Viet;Pham, Ky Nam;Han, Hyoung-Su;Lee, Jae-Shin
    • Journal of Powder Materials
    • /
    • v.17 no.5
    • /
    • pp.404-408
    • /
    • 2010
  • The effects of high energy ball-milling (HEBM) on the sintering behavior and piezoelectric properties of 0.1 wt% $Li_2CO_3$ doped 0.8Pb($Mg_{1/3}Nb_{2/3}$)$O_3$-0.2Pb($Zr_{0.475}Ti_{0.525}$)$O_3$ (PMN-PZT) ceramics were investigated. It was found that HEBM treatment was quite effective to reduce the average particle size down to 300 nm, leading to increased density as well as enhanced piezoelectric properties of a sintered specimen even though prolonged HEBM resulted in unwanted secondary phases that caused a degradation of piezoelectric properties. The dielectric constant ($\varepsilon_r$), piezoelectric coupling factor ($k_p$) and piezoelectric constant $d_{33}$ of 0.1 wt% $Li_2CO_3$ doped PMN-PZT ceramics prepared via HEBM for 10 h reached 2040, 0.68 and 554 pC/N, respectively.

Piezoelectric and Dielectric Properties of Low Temperature Sintering PMN-PZN-PZT Ceramics according to the Milling Time (밀링 시간에 따른 저온소결 PMN-PZN-PZT 세라믹스의 압전 및 유전특성)

  • Yoo, Ju-Hyun;Lee, Il-Ha;Lee, Kab-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.12
    • /
    • pp.1039-1043
    • /
    • 2007
  • In this paper, in order to develop low temperature sintering ceramics for multilayer piezoelectric actuator application, PMN-PZN-PZT ceramics were fabricated using $LiCO_3,\;Bi_2O_3$ and CuO as sintering aids. And also, their piezoelectric and dielectric properties were investigated according to the milling time. All the specimens sintered at $930\;^{\circ}C$ showed tetragonal phases without secondary phases. With increasing milling time, piezoelectric and dielectric characteristic of specimens increased up to 60 hours milling time and then decreased due to the agglomeration of fine particle. Accordingly, it seems that 60 hour is optimum milling condition. At the sintering temperature of $930\;^{\circ}C$ and milling time of 60 hour, density, dielectric constant(${\varepsilon}_r$), electromechanical coupling factor (kp), mechanical quality factor (Qm), piezoelectric d constant showed the optimum value of $7.95\;g/m^3$, 1382, 0.546, 1749, 330 pC/N, respectively for multilayer piezoelectric actuator application.

Measurement of all the Elastic, Dielectric and Piezoelectric Properties of PMN-PT Single Crystals (공진법을 이용한 PMN-PT 단결정의 탄성, 유전, 압전상수 측정)

  • 이상한;이수성;노용래;이호용;한진호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.1
    • /
    • pp.31-38
    • /
    • 2004
  • PMN-PT, a piezoelectric single crystal, has many useful applications such as sensors and actuators. In this paper, all the elastic, piezoelectric, and dielectric constants of the PMN-32%PT single crystals were measured by the resonance method. For the rhombohedral symmetry, a total of twelve independent material constants were measured such as six elastic compliance constants at constant electric field, two dielectric constants at constant stress, and four piezoelectric constants d. Seven sets of crystal samples of each different geometry were prepared for the measurement of length-thickness extensional, thickness extensional, radial, length extensional and thickness shear modes of vibration, respectively. In order to check the validity of the measurement, experimental impedance spectrum of the PMN-PT crystal was compared with numerical data spectrum calculated with the measured material constants. The good agreement between the two spectra confirmed validity of the results in this paper.

A study on the piezoelectric properties with PZT/PVDF composites of O-3 connectivity (O-3형 PZT/PVDF 복합재료의 압전특성에 관한 연구)

  • Choi, Yong;Kim, Yong-Huck;Kim, Ho-Gi;Lee, Deok-Chool
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.254-256
    • /
    • 1987
  • In this study, piezoelectric composite materials of O-3 connectivity were made by, mixing FZT ceramics with polymers, the dependence of volume % PZT and poling condition for dielectric and piezoelectric properties were investigated. The measured value of dielectric constant was dependent on the volume % PZT, which was exponentially increased with volume %PZT. Piezoelectric coefficient ($\bar{d}_{33}$) was exponentially increased with volume % PZT. Voltage coefficient ($\bar{g}_{33}$) was decreased with volume % PZT, but it was larger than that of single phase PZT ($\bar{g}_{33}$) because the dielectric constant ($\bar{\varepsilon}_{33}$) of composite materials was decreased.

  • PDF