• Title/Summary/Keyword: Piezoelectric Energy Harvesting Device

Search Result 73, Processing Time 0.032 seconds

A Study on the Generating Characteristics Depending on Driving System of a Honeycomb Shaped Piezoelectric Energy Harvester (벌집형 압전 발전 소자의 구동방식에 따른 출력 특성)

  • Jeong, Seong-Su;Kang, Shin-Chul;Park, Tae-Gone
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.2
    • /
    • pp.69-74
    • /
    • 2015
  • Recently, energy harvesting technology is increasing due to the fossil fuel shortages. Energy harvesting is generating electrical energy from wasted energies as sunlight, wind, waves, pressure, and vibration etc. Energy harvesting is one of the alternatives of fossil fuel. One of the energy harvesting technologies, the piezoelectric energy harvesting has been actively studied. Piezoelectric generating uses a positive piezoelectric effect which produces electrical energy when mechanical vibration is applied to the piezoelectric device. Piezoelectric energy harvesting has an advantage in that it is relatively not affected by weather, area and place. Also, stable and sustainable energy generation is possible. However, the output power is relatively low, so in this paper, newly designed honeycomb shaped piezoelectric energy harvesting device for increasing a generating efficiency. The output characteristics of the piezoelectric harvesting device were analyzed according to the change of parameters by using the finite element method analysis program. One model which has high output voltage was selected and a prototype of the honeycomb shaped piezoelectric harvesting device was fabricated. Experimental results from the fabricated device were compared to the analyzed results. After the AC-DC converting, the power of one honeycomb shaped piezoelectric energy harvesting device was measured 2.3[mW] at road resistance 5.1[$K{\Omega}$]. And output power was increased the number of harvesting device when piezoelectric energy harvesting device were connected in series and parallel.

Design and Analysis of Piezoelectric Energy Harvesting Device Using Waves (파도를 이용한 압전 에너지 수확 장치의 설계 및 해석)

  • Na, Yeong-min;Lee, Hyun-seok;Kang, Tae-hun;Park, Jong-kyu;Park, Tae-gone
    • Korean Journal of Materials Research
    • /
    • v.25 no.10
    • /
    • pp.523-530
    • /
    • 2015
  • Electricity generation through fossil fuels has caused environmental pollution. To solve this problem, research on new renewable energy (solar, wind, geothermal heat, etc.) to replace fossil fuels is in progress. These devices are able to consistently generate power. However, they have many drawbacks, such as high installation costs and limitations in possible set-up environments. Thus, piezoelectric harvesting technology, which is able to overcome the limitations of existing energy technologies, is actively being studied. Piezoelectric harvesting technology uses the piezoelectric effect which occurs in crystals that generate voltage when stress is applied. Therefore, it has advantages such as a wider installation base and lower technological cost. In this study, a piezoelectric energy harvesting device based on constant wave motion was investigated. This device can regenerate electricity in a constant turbulent flow in the middle of the sea. The components of the device are circuitry, a steel bar, an bimorph piezoelectric element and buoyancy elements. In addition, a multiphysical analysis coupled with the structure and piezoelectric elements was conducted to estimate the performance of the device. With this piezoelectric energy harvesting device, the displacement and electric power were analyzed.

Experiments on Piezoelectric Energy Harvesting Device (압전체를 이용한 에너지 수집 장치 실험)

  • Jung, Moon-San;Kwak, Moon-K.;Kim, Ki-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.360-368
    • /
    • 2007
  • This paper is concerned with the development of piezoelectric energy harvesting device. Literature survey was carried out to investigate the state-of-art technology regarding piezoelectric energy harvesting method. It shows that the piezoelectric energy harvesting system has been researched as the needs for the auxiliary power system grow for ubiquitous sensor node. In this study, the piezoelectric energy harvesting system was constructed and the corresponding electric circuit was also built to investigate the power characteristics. Experimental results show that it can charge the small battery with ambient vibrations but still needs an effective mechanism to collect ambient energies.

  • PDF

Development of Piezoelectric Energy Harvesting Device activated by Wind (바람에 의해 구동되는 압전에너지 수집 장치 개발)

  • Lee, Haeng-Woo;Kwak, Moon-K.;Yang, Dong-Ho;Lee, Han-Dong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.76-77
    • /
    • 2009
  • This paper is concerned with the development of the piezoelectric energy harvesting(PEH) device using Wind. In this study, the piezoelectric energy harvesting system consisting of a cantilever with a pinwheel and piezoelectric wafer was investigated in detail both theoretically and experimentally. The power output characteristics of the PEH was then calculated and discussed. Theoretical and experimental results showed that the PEH was able to charge a battery with ambient vibrations but still needed an effective mechanism which can convert mechanical energy to electrical energy and an optimal electric circuit which dissipates small energy.

  • PDF

Enhancement of Power Generation in Hybrid Thermo-Magneto-Piezoelectric-Pyroelectric Energy Generator with Piezoelectric Polymer (압전 폴리머를 접목한 초전-자기-압전 발전소자의 출력 특성 향상 연구)

  • Chang Min Baek;Geon Lee;Jungho Ryu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.620-626
    • /
    • 2023
  • Energy harvesting technology, which converts wasted energy sources in everyday life into usable electric energy, is gaining attention as a solution to the challenges of charging and managing batteries for the driving of IoT sensors, which are one of the key technologies in the era of the fourth industrial revolution. Hybrid energy harvesting technology involves integrating two or more energy harvesting technologies to generate electric energy from multiple energy conversion mechanisms. In this study, a hybrid energy harvesting device called TMPPEG (thermo-magneto-piezoelectric-pyroelectric energy generator), which utilizes low-grade waste heat, was developed by incorporating PVDF polymer piezoelectric components and optimizing the system. The variations in piezoelectric output and thermoelectric output were examined based on the spacing of the clamps, and it was found that the device exhibited the highest energy output when the clamp spacing was 2 mm. The voltage and energy output characteristics of the TMPPEG were evaluated, demonstrating its potential as an efficient hybrid energy harvesting component that effectively harnesses low-grade waste heat.

Micro Power Properties of Harvesting Devices as a Function of PZT cantilever length and gross area (PZT 캔틸레버의 길이와 면적에 따른 에너지 하베스팅 장치의 출력 특성)

  • Kim, I.S.;Joo, H.K.;Song, J.S.;Kim, M.S.;Jeong, S.J.;Lee, D.S.
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1246-1247
    • /
    • 2008
  • With recent advanced in portable electric devices, wireless sensor, MEMS and bio-Mechanics device, the new typed power supply, not conventional battery but self-powered energy source is needed. Particularly, the system that harvests from their environments are interests for use in self powered devices. For very low powered devices, environmental energy may be enough to use power source. Therefore, in other to made piezoelectric energy harvesting device, PMN-PZT thick film was formed by the screen printing method on the Ag/Pd coated alumina substrate. The layer was 8 layers and slurry where a-terpineol, ethycellulose, ferro B-75001 as Vehicle, PMN-PZT powder used are fabricated by ball mill. The output power quality was be also investigated by changing the load resistance, weight and frequency. The made piezoelectric energy harvesting device was resulted from the conditions of 33$k{\Omega}$, 0.25g, 197Hz respectively. The thick film was prepared at the condition of 2.75Vrms, and its power was 230${\mu} W$ and its thickness was 56${mu}m$. The piezoelectric energy harvesting device output voltage was increased, when the load weight, load resistance was increasing and resonance frequency was diminishing. The other side, resonance frequency was diminished, when the weight was increasing. And output power was continuously it changed by load resistance, output voltage, weight and resonance frequency.

  • PDF

Resonant Boost Converter for Harvesting Piezoelectric Energy (압전에너지 수확을 위한 공진형 부스트 컨버터)

  • Kim, Hyeok-Jin;Chung, Gyo-Bum
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.407-410
    • /
    • 2009
  • A piezoelectric device which converts mechanical vibration energy into electrical energy is able to harvest energy and the usable energy is mW ${\sim}$ W, hence a converter is necessary to acquire the energy efficiently. Various limited conditions should be considered for the design of AC/DC converter for energy harvesting of a piezoelectric device supplying small amount of energy. In addition to simple structure, compact size, light weight and high efficiency, the energy harvesting AC!DC converter should adopt the technique of self operating, in which only the harvested energy from the piezoelectric device is available. This paper proposes new AC/DC resonant boost converter to harvest efficiently electrical energy from mechanical vibration energy, analyzes the operating characteristics of the converter and proves its feasibility for energy harvester with PSPICE simulation and experiment.

  • PDF

Study on the Energy Harvesting System Using Piezoelectric Direct Effect of Piezo Film (압전 필름의 압전정 효과를 이용한 에너지 저장 시스템에 관한 연구)

  • Choi, Bum-Kyoo;Lee, Woo-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.9
    • /
    • pp.78-85
    • /
    • 2008
  • Piezoelectric materials have been investigated as vibration energy converters to power wireless devices or MEMS devices due to the recent low power requirements of such devices and the advancement in miniaturization technology. Piezoelectric power generation can be an alternative to the traditional power source-battery because of the presence of facile vibration sources in our environment and the potential elimination of the maintenance required for large volume batteries. This paper represents the new power source which supplies energy device node. This system, called "energy harvesting system", with piezo materials scavenges extra energy such as vibration and acceleration from the environment. Then it converts the mechanical energy scavenged to electrical energy for powering device This paper explains the properties of piezo material through theoretical analysis and experiments The developed system provides a solution to overcome the critical problem of making up wireless device networks.

Development of Piezoelectric Energy Harvesting Device and Experiments (압전체를 이용한 에너지 수집 장치 개발 및 실험)

  • Kim, Ki-Young;Kwak, Moon-K.;Kang, Ho-Yong;Kim, Nae-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.81-89
    • /
    • 2008
  • This paper is concerned with the development of the piezoelectric energy harvesting(PEH) device for ubiquitous sensor node(USN). The USN needs auxiliary power to lengthen its operational life. In this study, the piezoelectric energy harvesting system consisting of a cantilever with a tip mass and piezoelectric wafer was investigated in detail both theoretically and experimentally. The dynamic model for the addressed system was derived using the assumed mode method. The resulting equations of motion were expressed in matrix form, which had never been developed before. The power output characteristics of the PEH was then calculated and discussed. Various experiments were carried out to investigate the charging characteristics of electrical components. Theoretical and experimental results showed that the PEH was able to charge a battery with ambient vibrations but still needed an effective mechanism which can convert mechanical energy to electrical energy and an optimal electric circuit which dissipates small energy.

  • PDF

Dynamic Modeling of Piezoelectric Energy Harvesting Device and Experiments (압전 에너지 수집 장치의 동적모델링 및 실험)

  • Kwak, Moon-K.;Kim, Ki-Young;Kang, Ho-Yong;Kim, Nae-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.6
    • /
    • pp.632-641
    • /
    • 2008
  • This paper is concerned with the development of the piezoelectric energy harvesting(PEH) device for ubiquitous sensor node(USN). The USN needs auxiliary power to lengthen its operational life. In this study, the piezoelectric energy harvesting system consisting of a cantilever with a tip mass and piezoelectric wafer was investigated in detail both theoretically and experimentally. The dynamic model for the addressed system was derived using the assumed mode method. The resulting equations of motion were expressed in matrix form, which had never been developed before. The power output characteristics of the PEH was then calculated and discussed. Various experiments were carried out to investigate the charging characteristics of electrical components. Theoretical and experimental results showed that the PEH was able to charge a battery with ambient vibrations but still needed an effective mechanism which can convert mechanical energy to electrical energy and an optimal electric circuit which dissipates small energy.