• Title/Summary/Keyword: Phytophthora capsici.

Search Result 291, Processing Time 0.024 seconds

Development of Repetitive DNA Probes for Genetic Analysis of Phytophthora capsici (Phytophthora capsici의 유전적 특성 분석을 위한 Repetitive DNA Probe의 개발)

  • Song, Jeong-Young;Kim, Hong-Gi
    • The Korean Journal of Mycology
    • /
    • v.30 no.1
    • /
    • pp.66-72
    • /
    • 2002
  • To develop DNA markers for analysis of genetic characteristics of Phytophthora capsici population, randomly selected clones from HindIII-digested genomic DNA library of P. capsici 95CY3119 were surveyed by hybridizing to Southern blots of HindIII-digested total genomic DNA of P. capsici. Probe DNAs inserted into selected individual clones strongly hybridized with HindIII digests of P. capsici. Among probes examined, PC9 revealed the repetitive and highly polymorphic bands to HindIII digests of inter-and intra-field P. capsici isolates. Genetic diversity of individual isolates was also clearly revealed in cluster analysis based on its band patterns. The other probe, PC22, was hybridized only to DNA from P. capsici and this was highly repetitive. However, there was no response to other Phytophthora species and Pythium sp. These DNA probes could be used as very useful markers in analysing genetic diversity and identification for P. capsici population throughout the world.

Effect of Acidic Electrolyte Water on Growth and Infection of Phytophthora capsici (고추 역병균(Phytophthora capsici)의 발육과 감염에 미치는 산성전해수의 영향)

  • 이중환;권태룡;문재덕;이준탁
    • Korean Journal Plant Pathology
    • /
    • v.14 no.5
    • /
    • pp.440-444
    • /
    • 1998
  • This experiment was carried out to elucidate the effect of electrolytic water on the growth and infection of Phytophthora capsici. Zoospores of P. capsici did not grow on potato dextrose agar when the pathogen was cultured after suspended in electrolytifc water (pH 2.5, 3.0, 3,5) with HCI solution. When the 100 ml of electrolytic water (pH 2.5, 3.0, 3.5) was irrigated on the red pepper plants that had been inoculated by P. capsici (103 zoospores/ml), the red pepper plants were not infected but irrigated with sterilized water (pH 6.5) the red pepper plants were infected. With this result, it could be concluded that the good sterilization effect on P. capsici might be obtained by applying electrolytic water.

  • PDF

Identification and Antifungal Antagonism of Chryseomomas luteola 5042 against Phytophthora capsici (고추역병균 Phytophthora capsici의 생육을 저해하는 Chryseomonas luteola 5042의 선발과 항진균성 길항작용)

  • 윤경현;이은탁;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.3
    • /
    • pp.186-193
    • /
    • 2001
  • A powerful antagonistic bacterium against Phytophthora capsici causing phytophthora blight of red pepper was isolated from the cultivated soil in Kyongju Korea, The bilogical control mechanisms of the isolated strain were caused by strong antifungal antibiotic, siderophore and cellulase. The strain was identified as Chryseomonas luteola by the cultural morphological and physiological characteristics. The opti- mal culture medium for the antibiotic production was determined as follows : 0.15%D(+) cellobiose, 0.55% $NH_4$CI, 0.01% KCI 0.7% $K_2$$HPO_4$ 0.2% $KH_2$PO$_4$ and 0.5% sodium citrate at pH 7.0 The optimal incubation time was 84 hours at $30^{\circ}C$ In pot bioassay, the treatment of C luteola 5042 protected red pepper plant against the blight of Phytophthora capsici.

  • PDF

Biological Control of Oomycete Soilborne Diseases Caused by Phytophthora capsici, Phytophthora infestans, and Phytophthora nicotianae in Solanaceous Crops

  • Elena Volynchikova;Ki Deok Kim
    • Mycobiology
    • /
    • v.50 no.5
    • /
    • pp.269-293
    • /
    • 2022
  • Oomycete pathogens that belong to the genus Phytophthora cause devastating diseases in solanaceous crops such as pepper, potato, and tobacco, resulting in crop production losses worldwide. Although the application of fungicides efficiently controls these diseases, it has been shown to trigger negative side effects such as environmental pollution, phytotoxicity, and fungicide resistance in plant pathogens. Therefore, biological control of Phytophthora-induced diseases was proposed as an environmentally sound alternative to conventional chemical control. In this review, progress on biological control of the soilborne oomycete plant pathogens, Phytophthora capsici, Phytophthora infestans, and Phytophthora nicotianae, infecting pepper, potato, and tobacco is described. Bacterial (e.g., Acinetobacter, Bacillus, Chryseobacterium, Paenibacillus, Pseudomonas, and Streptomyces) and fungal (e.g., Trichoderma and arbuscular mycorrhizal fungi) agents, and yeasts (e.g., Aureobasidium, Curvibasidium, and Metschnikowia) have been reported as successful biocontrol agents of Phytophthora pathogens. These microorganisms antagonize Phytophthora spp. via antimicrobial compounds with inhibitory activities against mycelial growth, sporulation, and zoospore germination. They also trigger plant immunity-inducing systemic resistance via several pathways, resulting in enhanced defense responses in their hosts. Along with plant protection, some of the microorganisms promote plant growth, thereby enhancing their beneficial relations with host plants. Although the beneficial effects of the biocontrol microorganisms are acceptable, single applications of antagonistic microorganisms tend to lack consistent efficacy compared with chemical analogues. Therefore, strategies to improve the biocontrol performance of these prominent antagonists are also discussed in this review.

Biological Control of Phytophthora Blight of Red-pepper Caused by Phytophthora capsici;I. Selection of a Bacterial Antagonist against Photophthora capsici (고추 역병균(疫病菌)(병원균: Phytophthora capsici)의 생물학적(生物學的) 방제(防除);I. 고추 역병(疫病) 길항균(拮抗菌)의 선발(選拔))

  • Chang, Yoon-Hee;Chang, Sang-Moon;Lee, Dong-Hoon;Choi, Jyung
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.3
    • /
    • pp.289-295
    • /
    • 1996
  • This study was attempted to select an antagonist against Phytophthora blight of red-pepper caused by Phytophthora capsici. The three strains, A-35, A-67 and A-183 were isolated from the rhizosphere in soil where red-pepper had been cultivated continuously for a long time, and the strain A-83 was estimated to be the strongest antagonist against P. capsici. The A-183 strain was identified as a strain of Pseudomonas sp., showing the maximum antifungal activity, when cultured at $30^{\circ}C$ for 5 days in the potato extract medium(pH 6.5) containing 2.0% mannitol and 0.3% peptone.

  • PDF

Selection in $F_3$ and $F_4$ Generations of a Cross for Breeding Genic Male Sterile Pepper Lines Resistant to Phytophthora Blight and Bacterial Spot (역병과 세균성점무늬병에 복합저항성인 핵유전형 웅성불임성 고추 계통 육성을 위한 교배의 $F_3-F_4$세대 선발)

  • Park, Dong-Keun;Kim, Byung-Soo
    • Current Research on Agriculture and Life Sciences
    • /
    • v.28
    • /
    • pp.17-23
    • /
    • 2010
  • Selection procedures for breeding genic male sterile lines for resistance to both Phytophthora blight caused by Phytophthora capsici and bacterial spot caused by Xanthomonas euvesicatoria were executed to $F_3$ and $F_4$ generations derived from a cross between a Phytophthora resistant genic male sterile (GMS) breeding line and a bacterial spot and Phytophthora resistant breeding line. Resistance to P. capsici was originally introduced from KC294(CM334) and KC263(AC2258), the well-known sources of resistance to P. capsici. Resistance to bacterial spot was introduced from KC47(PI244670). GMS lines with high resistance to P. capsici were obtained and the selected lines are expected to be quantitatively resistant also to bacterial spot.

  • PDF

Selection and Antagonistic Mechanism of Pseudomonas fluorescens 4059 Against Phytophthora Blight Disease (고추역병과 시들음병을 방제하는 토착길항세균 Pseudomonas fluorescens 4059의 선발과 길항기작)

  • Jeong, Hui-Gyeong;Kim, Sang-Dal
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.4
    • /
    • pp.312-316
    • /
    • 2004
  • In oder to select the powerful rhizophere-dorminatable biocontrol agent, we had isolated an indigenous antagonistic bacterium which produced antibiotic and siderophore from a disease suppressive local field soil of Gyungsan, Korea. And we could select the Pseudomosp. 4059 which can strongly antagonize against Fusarium oxysporum and Phytophthora capsici by two kinds of antifungal mechanism that can be caused by the antibiotic of Phenazin, a siderophore and a auxin like subThe selected strain was identified as Pseudomonas fluorescens (biotype A) 4059 by biochemical tests, API $\textregistered$ test, MicroLog TM system and 16S rDNA analysis. The selected antagonistic microorganism, Pseudomosp. 4059 had an antifungal mechanism of antifungal antibiotic and sidrophore. And we were confirmed the antagonistic activity of P fluorescens 4059 with in vitro antifungal test against Phytophthora capsici and in vivo by red-pepper.

Utilization of Domestic Vegetables Juices as a Medium for Growth and Reproduction of Phytophthora species (국내산 야채쥬스의 역병균 영양생장 및 생식생장용 배양기 이용)

  • 지형진;조원대;최용철
    • Korean Journal Plant Pathology
    • /
    • v.14 no.4
    • /
    • pp.299-302
    • /
    • 1998
  • V8 juice agar (V8A) has been the most popular and commonly used medium for growth and reproduction of Phytophthora. However, frequently V8 vegetable juice is not available or difficult to obtain in Korea. We therefore developed widely accessible medium to substitute for V8A using domestically available five juices; two carrot (KCJA), two tomato (KTJA) and a vegetable-mix (KVMA). To prepare 10% juice medium, each vegetable juice 100 ml, DW 900 ml, agar 17 g and Ca CO3 0.5∼1.0g were supplemented to adjust pH ca. 6.0 Mycelial growth of P. cactorum and P. capsici on KTJA and KVMA was equally effective as V8A for the growth of P. cactorum, P. capsici, P. drechsleri and P. nicotianae under light. Sporangial production of P cactorum, P. capsici and P. nicotianae on KTJA and KVMA was as good as V8A and slightly better than CKJA, but the difference was insignificant by P. cactorum and P. nicotianae. The four fungi successfully formed oospores on all the media although the numbers were varied among species and media. While KTJA was the best for P. cactorum and P. capsici, V8A was the best for P. capsici and P. drechsleri. However, KCJA stimulated highest number of oopspores of P. nicotianae. Overall results showed that domestically available vegetable juices were highly effective on growth and reproduction of Phytophthora and comparable to V8 juice. Therefore, the domestic juice medium can be successfully replaced V8A in Phytophthora study.

  • PDF

Baseline Sensitivity to Mandipropamid Among Isolates of Phytophthora capsici Causing Phytophthora Blight on Pepper

  • Jang, Ho-Sun;Lee, Soo-Min;Kim, Sun-Bo;Kim, Joo-Hyung;Knight, Susan;Park, Kwee-Doo;McKenzie, Duncan;Kim, Heung-Tae
    • The Plant Pathology Journal
    • /
    • v.25 no.4
    • /
    • pp.317-321
    • /
    • 2009
  • Sensitivity to the new carboxylic acid amide fungicide, mandipropamid, of Phytophthora capsici causing pepper Phytophthora blight was determined on 187 isolates collected in Korea over 3 years, from 2005 to 2007. All isolates were sensitive to mandipropamid, with $EC_{30}$ values for growth of mycelia ranging from 0.001 to $0.037\;{\mu}g/ml$. Among the isolates, 147 (79.0%) isolates were sensitive to metalaxyl, whereas others were resistant to this fungicide. Mandipropamid had the same effect on mycelium growth of both metalaxyl-sensitive and metalaxyl-resistant isolates, indicating an absence of cross-resistance between these two fungicides. Comparison of the sensitivities of P. capsici isolates showed a positive correlation between sensitivity to mandipropamid and dimethomorph ($r^2$=0.8533). The results of this study indicate that there is no evidence for development of resistance to mandipropamid in this population of P. capsici isolates collected in Korea.

Effect of Potassium Silicate Amendments in Hydroponic Nutrient Solution on the Suppressing of Phytophthora Blight (Phytophthora capsici) in Pepper

  • Seo, Sang-Tae;Wang, T.C.;Jang, Han-Ik;Pae, Do-Ham;Engle, L.M.;Lee, Jung-Sup
    • The Plant Pathology Journal
    • /
    • v.20 no.4
    • /
    • pp.277-282
    • /
    • 2004
  • Amendments of a recirculating nutrient solution with potassium silicate were evaluated as a means to control Phytophthora capsici infections on pepper plant(Capsicum annuum L.). Supplying the solutions with 100 or 200 ppm of silicate significantly reduced motility, root decay, and yield losses attributed to infection of P. capsici. Treating inoculated plants with potassium silicate increased root dry weights and number of fruit, especially high-grade fruit. Results were slightly superior to non-inoculated controls. The two varieties, PBC 137 and PBC 602, responded similarly to the treatments. No significant differences were observed between the 100- and 200 ppm silicate treatments. Results were better when greenhouse conditions favored the spread of P. capsici. Silicon alone did not increase pepper yield, suggesting that it acts as a disease suppression agent rather than as a fertilizer, The phenomena by which silicon confers protection against P. capsici infection and disease development are not fully understood, but our results indicate that mechanisms other than a mechanical barrier to fungal penetration are involved.