• Title/Summary/Keyword: Physiology injury

Search Result 477, Processing Time 0.028 seconds

Study on The Responseness to Oriental Medicine Therapy and Single-Nucleotide Polymorphism in Korean Cerebral Infarction Patients

  • Lee, Se-Yun;Lee, Yoon-Kyoung;Kim, Jae-Su;Lee, Kyung-Min;Jung, Tae-Young;Lim, Seong-Chul
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.4
    • /
    • pp.993-999
    • /
    • 2008
  • Ischemic brain injury such as cerebral infarction is characterized by acute local inflammatory response mediated by cytokines. The mechanism of cytokines involved in cerebral infarction progression are uncompletely revealed yet. We investigated to find out the relationship between single nucleotide polymorphism (SNP) of interleukin 4 receptor(IL4R) and Oriental Medicine therapy efficacy in patients with cerebral infarction for 2 weeks. Oriental Korean Medicine therapies (herbal medicine and acupuncture) were applied daily and motor functions of patients were assessed using the modified cerebral vascular accident (MCVA) scores. Genotyping for IL4R polymorphism was done by pyrosequencing analysis. In IL4R genotypes and the frequency of alleles, there was no significant difference between cerebral infarction patients (n=124) and controls group (n=175). And there was also no significant difference among good and bad responders in cerebral infarction patients. In this study the IL4R genotype might not be the risk factor or a good predictive genetic marker for good and bad responders in cerebral infarction patients in Korean. Further studies including different cytokine genes will be necessary for the exact genetic markers.

Analysis of Plasma Proteome before and after Oral Administration of Acidic Polysacharide from Panax Ginseng, Double-blind, Placebo-controlled, Randomised Trial (인삼 다당체 경구 투여 전 ${\cdot}$ 후 혈장의 proteome 분석;무작위배정, 이중 맹검, 위약비교시험)

  • Lee, Seon-Goo;Cho, Young-Ho;Kang, Tae-Gyu;Yang, Ha-Young;Yoo, Byong-Chul;Cho, Chong-Kwan;Yoo, Hwa-Seung
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.5
    • /
    • pp.1185-1193
    • /
    • 2007
  • Ginsing polysaccharide, known to have an immune regulating effect, was administered to 23 randomly selected healthy male subjects with a mean age of 23 years in accordance with an IRB approval. Then, these subjects underwent physico-chemical tests and serum proteome was analyzed from the blood sample taken from these subjects. Analyses of proteome involved image analysis, protein sections and protein identification in sequence after two-dimensional electrophoresis was carried out. During the physico-chemical test, 4 subjects were excluded from the study. In the proteome analysis, identified were 5 spots such as SP40, 40, Cytokeratin 9, hypothetical protein LOC544932, Apolipoprotein E ,similar to Human albumin, which showed differences in the amount of protein expression. In conclusion, changes of 5 proteins were remarkable before and after administration of ginsing polysaccharides. In certain cases, hepatic and renal slight injury occurred. Thus, further clinical study on dosage regimen would be necessary for securing the basis for concentration-dependent effectiveness and safety.

Long-Duration Three-Dimensional Spheroid Culture Promotes Angiogenic Activities of Adipose-Derived Mesenchymal Stem Cells

  • Lee, Jun Hee;Han, Yong-Seok;Lee, Sang Hun
    • Biomolecules & Therapeutics
    • /
    • v.24 no.3
    • /
    • pp.260-267
    • /
    • 2016
  • Mesenchymal stem cells (MSCs) offer significant therapeutic promise for various regenerative therapies. However, MSC-based therapy for injury exhibits low efficacy due to the pathological environment in target tissues and the differences between in vitro and in vivo conditions. To address this issue, we developed adipose-derived MSC spheroids as a novel delivery method to preserve the stem cell microenvironment. MSC spheroids were generated by suspension culture for 3 days, and their sizes increased in a time-dependent manner. After re-attachment of MSC spheroids to the plastic dish, their adhesion capacity and morphology were not altered. MSC spheroids showed enhanced production of hypoxia-induced angiogenic cytokines such as vascular endothelial growth factor (VEGF), stromal cell derived factor (SDF), and hepatocyte growth factor (HGF). In addition, spheroid culture promoted the preservation of extracellular matrix (ECM) components, such as laminin and fibronectin, in a culture time- and spheroid size-dependent manner. Furthermore, phosphorylation of AKT, a cell survival signal, was significantly higher and the expression of pro-apoptotic molecules, poly (ADP ribose) polymerase-1 (PARP-1) and cleaved caspase-3, was markedly lower in the spheroids than in MSCs in monolayers. In the murine hindlimb ischemia model, transplanted MSC spheroids showed better proliferation than MSCs in monolayer. These findings suggest that MSC spheroids promote MSC bioactivities via secretion of angiogenic cytokines, preservation of ECM components, and regulation of apoptotic signals. Therefore, MSC spheroid-based cell therapy may serve as a simple and effective strategy for regenerative medicine.

Up-regulation of Heme Oxygenase-1 by Korean Red Ginseng Water Extract as a Cytoprotective Effect in Human Endothelial Cells

  • Yang, Ha-Na;Lee, Seung-Eun;Jeong, Seong-Il;Park, Cheung-Seog;Jin, Young-Ho;Park, Yong-Seek
    • Journal of Ginseng Research
    • /
    • v.35 no.3
    • /
    • pp.352-359
    • /
    • 2011
  • Korean red ginseng (KRG) is used worldwide as a popular traditional herbal medicine. KRG has shown beneficial effects on cardiovascular diseases, such as atherosclerosis, diabetes, and hypertension. Up-regulation of a cytoprotective protein, heme oxygenase (HO)-1, is considered to augment the cellular defense against various agents that may induce cytotoxic injury. In the present study, we demonstrate that KRG water extract induces HO-1 expression in human umbilical vein endothelial cells (HUVECs) and possible involvement of the anti-oxidant transcription factor nuclear factor-eythroid 2-related factor 2 (Nrf2). KRG-induced HO-1 expression was examined by western blots, reverse transcriptase polymerase chain reaction and immunofluorescence staining. Specific silencing of Nrf2 genes with Nrf2-siRNA in HUVECs abolished HO-1 expression. In addition, the HO inhibitor zinc protoporphyrin blunted the preventive effect of KRG on $H_2O_2$-induced cell death, as demonstrated by terminal transferase dUTP nick end labeling assay. Taken together, these results suggest that KRG may exert a vasculoprotective effect through Nrf2-mediated HO-1 induction in human endothelial cell by inhibition of cell death.

Protective Effects of Kamidojuk-san on the Nervous Systems

  • Hwang Chang Ha;Nam Gung Uk;Park Jong Oh;Lee Yong Koo;Choi Sun Mi;Kim Dong Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.2
    • /
    • pp.586-595
    • /
    • 2004
  • Kamidojuk-San (KDJS) is known to be effective for treating cardiovascular diseases such hypertension, and clinically applied for the treatment of cerebral palsy or stoke patients. Yet, the overall mechanisms underlying its activity at the cellular levels are not known. Using experimental animal system, we investigated whether KDJS has protective effects on cells in cardiovascular and nervous systems. KDJS was found to rescue death of cultured primary neurons induced by AMPA, NMDA and kainate as well as BSO and Fe/sup 2+/ treatments. Moreover, KDJS treatment promoted animal's recovery from coma induced by a lethal dose of KCN treatment, and improved survival in animals exposed to lethal dose of KCN. Neurological examinations further showed that KDJS reduced the time which is required for animals to respond in terms of forelimb and hindlimb movements. To examine its physiological effects on cardiovascular and nervous systems, we induced ischemic injury in hippocampal neurons and cerebral neurons by middle cerebral artery (MCA) occlusion. Histological examination revealed that KDJS significantly protected neurons from ischemic damage. Thus, the present data suggest that KDJS may play an important role in protecting cells of cardiovascular and nervous systems from external noxious stimulations.

Forehead Island Flap For Nasal Reconstruction (이마 섬피판을 이용한 코재건술)

  • Lee, Keun-Cheol;Kwon, Yong-Seok;Jung, Ki-Hwan;Han, Jae-Jung;Park, Jung-Min;Kim, Seok-Kwun
    • Archives of Plastic Surgery
    • /
    • v.32 no.2
    • /
    • pp.199-204
    • /
    • 2005
  • The nose is the most prominent area of the face, therefore susceptible to trauma and skin cancer. When small sized defect is in nasal tip, it results in disturbance of the facial harmony even if replantation, composite graft, skin graft or median forehead flap has been used for the reconstruction. So it is needed that the best method reconstruction is performed according to the degree of defect or deformity. And at the same time the physiology and anatomy of nose were clarified and its aesthetic subunits were employed. How can we cover the about 3 cm sized nasal defect in nasal tip with cartilage exposure? At first, we can think forehead island flap is most appropriate. We performed 7 cases of the forehead island flap for reconstruction of the defect in nasal tip(4 cases: cancer, 3 cases: trauma) from March, 2001 to August, 2004. This result was satisfactory in the point of texture, color, donor scar, and there were no complication such as wound disruption, infection, flap atrophy, and hematoma. The advantages of forehead island flap are: 1) No injury of deep vessel and nerve, 2) control of shape and volume, 3) Short operation time, 4) primary closure of donor site, 5) one stage operation. Also, forehead island flap can cover the defect in nose where skin graft and local flap can not cover. But, operator always must take care for flap congestion and donor site scar. We thought forehead island flap is one of the best option of reconstruction of nasal tip defect.

Increasing injection frequency enhances the survival of injected bone marrow derived mesenchymal stem cells in a critical limb ischemia animal model

  • Kang, Woong Chol;Oh, Pyung Chun;Lee, Kyounghoon;Ahn, Taehoon;Byun, Kyunghee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.6
    • /
    • pp.657-667
    • /
    • 2016
  • Critical limb ischemia (CLI) is one of the most severe forms of peripheral artery diseases, but current treatment strategies do not guarantee complete recovery of vascular blood flow or reduce the risk of mortality. Recently, human bone marrow derived mesenchymal stem cells (MSCs) have been reported to have a paracrine influence on angiogenesis in several ischemic diseases. However, little evidence is available regarding optimal cell doses and injection frequencies. Thus, the authors undertook this study to investigate the effects of cell dose and injection frequency on cell survival and paracrine effects. MSCs were injected at $10^6$ or $10^5$ per injection (high and low doses) either once (single injection) or once in two consecutive weeks (double injection) into ischemic legs. Mice were sacrificed 4 weeks after first injection. Angiogenic effects were confirmed in vitro and in vivo, and M2 macrophage infiltration into ischemic tissues and rates of limb salvage were documented. MSCs were found to induce angiogenesis through a paracrine effect in vitro, and were found to survive in ischemic muscle for up to 4 weeks dependent on cell dose and injection frequency. In addition, double high dose and low dose of MSC injections increased vessel formation, and decreased fibrosis volumes and apoptotic cell numbers, whereas a single high dose did not. Our results showed MSCs protect against ischemic injury in a paracrine manner, and suggest that increasing injection frequency is more important than MSC dosage for the treatment CLI.

Synergistic Efficacy of Concurrent Treatment with Cilostazol and Probucol on the Suppression of Reactive Oxygen Species and Inflammatory Markers in Cultured Human Coronary Artery Endothelial Cells

  • Park, So-Youn;Lee, Jeong-Hyun;Shin, Hwa-Kyoung;Kim, Chi-Dae;Lee, Won-Suk;Rhim, Byung-Yong;Shin, Yung-Woo;Hong, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.4
    • /
    • pp.165-170
    • /
    • 2008
  • In the present study, we aimed to identify the synergistic effects of concurrent treatment of low concentrations of cilostazol and probucol to inhibit the oxidative stress with suppression of inflammatory markers in the cultured human coronary artery endothelial cells (HCAECs). Combination of cilostazol (0.3${\sim}3{\mu}$M) with probucol (0.03${\sim}0.3{\mu}$M) significantly suppressed TNF-${\alpha}$-stimulated NAD(P)H-dependent superoxide, lipopolysaccharide (LPS)-induced intracellular reactive oxygen species (ROS) production and TNF-${\alpha}$ release in comparison with probucol or cilostazol alone. The combination of cilostazol (0.3${\sim}3{\mu}$M) with probucol (0.1${\sim}0.3{\mu}$M) inhibited the expression of vascular cell adhesion molecule-1 (VCAM-1) and monocyte chemoattractant protein-1 (MCP-1) more significantly than did the monotherapy with either probucol or cilostazol. In line with these results, combination therapy significantly suppressed monocyte adhesion to endothelial cells. Taken together, it is suggested that the synergistic effectiveness of the combination therapy with cilostazol and probucol may provide a beneficial therapeutic window in preventing atherosclerosis and protecting from cerebral ischemic injury.

Lamotrigine Decreased Hippocampal Damage and Improved Vascular Risk Markers in a Rat Model of Pentylenetetrazole Induced Kindling Seizure

  • Haggag, Basma S.;Hasanin, Amany H.;Raafat, Mona H.;Kawy, Hala S. Abdel
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.3
    • /
    • pp.269-278
    • /
    • 2014
  • Various antiepileptic drugs (AEDs) especially enzyme-inducing AEDs might be associated with increased vascular risk, through impairment of the endogenous antioxidative ability which may trigger oxygen-dependent tissue injury. Lamotrigine (LTG) a non-enzyme-inducing AED has scarce information regarding its effects on oxidative stress. The present study aimed to study the possible modulation of vascular risk factors of epileptogenesis by LTG, in a rat model of kindling seizure induced by pentylenetetrazole (PTZ). Four groups of male Wister rats were used; vehicle control group, PTZ group (alternate day PTZ, 30 mg/kg, i.p), LTG/PTZ group (LTG 20 mg/kg/day p.o and alternate day PTZ) and LTG group. The study period was 5 weeks. Lipoproteins and total homocysteine (tHcy), malondialdehyde (MDA) and reduced glutathione (GSH) were measured. Aortic endothelial function study and histopathological examination of the rats' brains, aortas and coronaries were conducted. Serum total cholesterol (TC), triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C), tHcy, MDA, GSH levels were significantly higher in epileptic rats than normal controls rats. A decrease in HDL-cholesterol with high atherosclerotic index was also demonstrated. The administration of LTG improved the PTZ-kindled seizures. It produced a significant decrease in TC, TG and LDL-cholesterol, MDA, aortic GSH and increase in HDL-cholesterol with no significant effect on serum GSH and tHcy levels. LTG improved endothelium-dependent relaxation, decreased hippocampal neurodegenerative changes and atherosclerotic changes of aortas and coronaries. LTG decreased seizures severity, hippocampal damage and improved vascular risk markers in this rat model of kindling seizures.

Inhibition of ERK1/2 by silymarin in mouse mesangial cells

  • Youn, Cha Kyung;Cho, Sung Il;Lee, Min Young;Jeon, Young Jin;Lee, Seog Ki
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.1
    • /
    • pp.117-124
    • /
    • 2017
  • The present study aimed to show that pro-inflammatory cytokines [tumor necrosis factor (TNF)-${\alpha}$, interferon (IFN)-${\gamma}$, and interleukin (IL)-$1{\beta}$] synergistically induce the production of nitric oxide (NO) production in mouse mesangial cells, which play an important role in inflammatory glomerular injury. We also found that co-treatment with cytokines at low doses (TNF-${\alpha}$; 5 ng/ml, IFN-${\gamma}$; 5 ng/ml, and IL-$1{\beta}$; 1.25 U/ml) synergistically induced NO production, whereas treatment with each cytokine alone did not increase NO production at doses up to 100 ng/ml or 50 U/ml. Silymarin, a polyphenolic flavonoid isolated from milk thistle (Silybum marianum), attenuates cytokine mixture (TNF-${\alpha}$, IFN-${\gamma}$, and IL-$1{\beta}$)-induced NO production. Western blot and RT-PCR analyses showed that silymarin inhibits inducible nitric oxide synthase (iNOS) expression in a dose-dependent manner. Silymarin also inhibited extracellular signal-regulated protein kinase-1 and -2 (ERK1/2) phosphorylation. Collectively, we have demonstrated that silymarin inhibits NO production in mouse mesangial cells, and may act as a useful anti-inflammatory agent.