• Title/Summary/Keyword: Physiological damage

Search Result 515, Processing Time 0.027 seconds

Effects of Fertilization on Physiological Parameters in American Sycamore (Platanus occidentalis) during Ozone Stress and Recovery Phase

  • Han, Sim-Hee;Kim, Du-Hyun;Lee, Jae-Cheon;Kim, Pan-Gi
    • Journal of Ecology and Environment
    • /
    • v.32 no.3
    • /
    • pp.149-158
    • /
    • 2009
  • American sycamore seedlings were grown in chambers with two different ozone concentrations ($O_3$-free air and air with additional $O_3$) for 45 days. Both the control and the $O_3$ chambers included non-fertilized and fertilized plants. After 18 days of $O_3$ fumigation, seedlings were placed in a clean chamber for 27 days. Seedlings under ozone fumigation showed a significant decrease in pigment contents and photosynthetic activity, and a significant increase in lipid peroxidation. Fertilization enhanced physiological damage such as the inhibition of photosynthetic activity and the increase of lipid peroxidation under ozone fumigation. During the recovery phase, the physiological damage level of seedlings increased with ozone fumigation. In addition, physiological damage was observed in the fertilized seedlings. Superoxide dismutase (SOD) and glutathione reductase (GR) activities of $O_3$-treated seedlings increased up to 33.8% and 16.3% in the fertilized plants. The increase of SOD activity was higher in the fertilized plants than in the non-fertilized plants. Negative effects of ozone treatment were observed in the biomass of the leaves and the total dry weight of the fertilized sycamore seedlings. The $O_3$-treated seedlings decreased in stem, root and total dry weight, and the loss of biomass was statistically significant in the fertilized plants. In conclusion, physiological disturbance under normal nutrient conditions has an effect on growth response. In contrast, in conditions of energy shortage, although stress represents a physiological inhibition, it does not seem to affect the growth response.

Physiological Characteristics of Green Mold(Trichoderma spp.) Isolated from Oyster Mushroom(Pleurotus spp.)

  • Choi, In-Young;Joung, Gi-Tae;Ryu, Joung;Choi, Joung-Sik;Choi, Yeong-Geun
    • Mycobiology
    • /
    • v.31 no.3
    • /
    • pp.139-144
    • /
    • 2003
  • This study was conducted to investigate physiological characteristics of Trichoderma spp. isolated from Pleurotus spp. Damage tests of Pleurotus spp. and mycotoxins tests of Trichoderma spp. were also done. The optimal growth temperature of Trichoderma spp. was $27{\sim}30^{\circ}C$. Although, T. longibrachiatum was able to grow at $37^{\circ}C$ and grew $30{\sim}40$ times faster than Pleurotus. The colony colour on PDA medium of T. cf. virens was yellowish green, T. longibrachiatum was yellow, and T. harzianum was turning to bright green. In damage tests of Pleurotus by Trichoderma, T. cf. virens caused the most severe damage to Pleurotus. T. longibrachiatum and T. harzianum caused less damage on Pleurotus but were able to cause greater damage to P. eryngii. One of the mushroom cultivars, P. ostreatus 8 was the most resistant to all Trichoderma spp.. Chitinolytic mycotoxin released by Trichoderma spp. caused 52.7% damage to Pleurotus. Mycotoxins released by T. longibrachiatum caused the greatest damaged(78.6%) on P. eryngii.

Comparison of the Impact of an Optimized Ice Cooling Vest and a Paraffin Cooling Vest on Physiological and Perceptual Strain

  • zare, Mansoor;dehghan, Habibollah;yazdanirad, Saeid;khoshakhlagh, Amir hossein
    • Safety and Health at Work
    • /
    • v.10 no.2
    • /
    • pp.219-223
    • /
    • 2019
  • Background: Ice cooling vests can cause tissue damage and have no flexibility. Therefore, these two undesirable properties of ice cooling vest were optimized, and the present study was aimed to compare the impact of the optimized ice cooling vest and a commercial paraffin cooling vest on physiological and perceptual strain under controlled conditions. Methods: For optimizing, hydrogel was used to increase the flexibility and a layer of the ethylene vinyl acetate foam was placed into the inside layer of packs to prevent tissue damage. Then, 15 men with an optimized ice cooling vest, with a commercial paraffin cooling vest, and without a cooling vest performed tests including exercise on a treadmill (speed of 2.8 km/hr and slope of %0) under hot ($40^{\circ}C$) and dry (40 %) condition for 60 min. The physiological strain index and skin temperature were measured every 5 and 15 minutes, respectively. The heat strain score index and perceptual strain index were also assessed every 15 minutes. Results: The mean values of the physiological and perceptual indices differed significantly between exercise with and without cooling vests (P < 0.05). However, the difference of the mean values of the indices except the value of the skin temperature during the exercises with the commercial paraffin cooling vest and the optimized ice cooling vest was not significant (P > 0.05). Conclusions: The optimized ice cooling vest was as effective as the commercial paraffin cooling vest to control the thermal strain. However, ice has a greater latent heat and less production cost.

Feasibility Study on Styrofoam Layer Cushioning for Banana Bulk Transport in a Local Distribution System

  • Wasala, W.M.C.B.;Dharmasena, D.A.N.;Dissanayake, C.A.K.;Tilakarathne, B.M.K.S.
    • Journal of Biosystems Engineering
    • /
    • v.40 no.4
    • /
    • pp.409-416
    • /
    • 2015
  • Purpose: This study evaluates a new banana bulk packaging method under the real transport conditions of Sri Lanka. Methods: A field evaluation of optimized 8-mm thick Styrofoam sheets used as the cushioning material was applied. A trial transport was conducted from Thambuttegama to Colombo using a medium-sized open truck, with banana leaves as the control material. Data were recorded at the farmer, transporter, retailer, and consumer stages of the supply chain. Mechanical damage, physiological loss in weight, fruit firmness, total soluble solids, ripeness index, visual quality ratings, and the physical damage index of the bananas were measured at each stage. A cost-benefit analysis was also conducted for both packaging methods. Results: The 8-mm styrofoam sheets significantly reduced (p < 0.05) the mechanical damage from 26.3% to 12.9% compared to the conventional method for long-distance transport, and the physiological loss in weight showed a decrease of 2.88%. The loss of firmness of the fruits followed a simmilar pattern for both methods until reaching the retailer, but at the consumer was significantly higher (p < 0.05) for the control. However, the physical damage index at the retail stage for the control showed symptoms of physical injury, whereas the bananas transported using the cushioning materials exhibited only minor symptoms. Further, the visual quality of the fruits after transport from the farmer to the consumer was preserved, which is one of the main factors affecting consumer preference and retail price. The proposed method increases the profit margin by 51.2% for Embul bananas owing to the reduced postharvest losses. Conclusion: The 8-mm thick Styrofoam sheets reduced the physical damage to the bananas, with the quality parameters maintained at the prefered level. Moreover, profits may be increased.

Effects of Salt in Soil Condition on Chlorophyll Fluorescence and Physiological Disorder in Panax ginseng C. A. Meyer (토양 염류 농도가 인삼 잎의 엽록소 형광반응 및 생리장해 발생에 미치는 영향)

  • Kim, Jang Uk;Hyun, Dong Yun;Kim, Young Chang;Lee, Jung Woo;Jo, Ick Hyun;Kim, Dong Hwi;Kim, Kee Hong;Sohn, Jae Keun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.6
    • /
    • pp.446-453
    • /
    • 2015
  • Background : Excessively high concentration of sodium ion causednutrient deficiency and significantly decrease growth. This study was carried out to determine the limiting concentration range of sodium ion in the soil of ginseng field. Methods and Results : The growth of the ginseng cultivar Chunpoong reduced with increase in salinity, and the rate of growth reduction was higher in shoots than that of roots. Particularly, ginseng plants cultivated at high level of nitrate nitrogen or sodium may suffer delayed development and stunted growth. Chlorophyll damage occurred on the leaves of ginseng planted in relatively high levels (> $0.2cmol^+/kg$) of sodium ion, as determined by the fluorescence reaction. The incidence of physiological disorder in ginseng cultivated at 249 sites was correlated with the concentration of sodium ion in the soils. About 74% of ginseng fields in which physiological disorders occurred had concentrations of sodium ion in soil greater than $0.2cmol^+/kg$. In contrast, the concentration of sodium ions at 51 of 85 sites where no damage occurred was relatively ($0.05cmol^+/kg-0.15cmol^+/kg$). Conclusions : The concentration of sodium ion in soil of ginseng fields can be classified into three levels optimum (${\leq}0.15$), permissible allowance (0.15 - 0.2) and excessive (> 0.2).

Protection of Peroxynitrite-Induced DNA Damage by Dietary Antioxidants

  • Moon Hye-Kyung;Yang Eun-Sun;Park Jeen-Woo
    • Archives of Pharmacal Research
    • /
    • v.29 no.3
    • /
    • pp.213-217
    • /
    • 2006
  • The present study was undertaken to test the hypothesis that dietary antioxidants protect DNA damage induced by peroxynitrite, a potent physiological inorganic toxin. The present study showed that dietary antioxidants such as (-)-epigallocatechin gallate, quercerin, rutin, resveratrol, and ursolic acid inhibit single strand breaks in supercoiled plasmid DNA induced by 3-morpholinosydnomine N-ethylcarbamide (SIN-1), a generator of peroxynitrite through the reaction between nitric oxide and superoxide anion. The formation of 8-hydroxy-2'-deoxyguanosine (8-OH-dG) in calf thymus DNA by SIN-1 was also inhibited by dietary antioxidants. When U937 cells were incubated with 1 mM SIN-1 bolus, a significant increase of 8-OH-dG level was observed. However, oxidative DNA damage was significantly lower in the cells pre-treated with dietary antioxidants when cells were exposed to SIN-1.

Meteorological Constraints and Countermeasures in Winter Crop Production (동작물의 기상재해와 그 대책)

  • Cho, C.H.;Lee, E.S.;Ha, Y.W.;Lee, J.I.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.4
    • /
    • pp.411-434
    • /
    • 1982
  • Yield loss of wheat and barley due to meteorological constraints has been analyzed in order to get the basic information, which will lead to the counter-measures for dissemination of agricultural technology and administration. These meteorological damages were analyzed on the results of percentage yield loss and mechanism of damage and the aspects of constraints were explained. The annual yield loss of wheat and barley were 21.7% by meteorological stress: Cold damage, 5.9% ; excessive soil moisture, 5.6% ; lodging, 2.9% ; drought, 3.0% ; disease, 4.3% etc. Those damages by the stresses mentioned above and rain damage were analyzed in relation to the growth stages and the degrees of damage. The predispositions and the growth of wheat and barley to those meteorological stress are also discussed. Varietal resistances of wheat and barley to those stresses were indexed and the physiological and morphological characteristics of these resistant cultivars are described. Cultural practices to minimize the damages were also reviewed.

  • PDF

Study on the "Syndromes due to Damage and Disease" of 『Donguibogam·Five viscera and Six Bowels』 and the Function and Structural Characteristics of the Five Viscera (『東醫寶鑑·五臟六腑』의 [傷證], [病證]과 오장의 機構的 특성에 대한 소고)

  • Lee, Yong Tae
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.29 no.6
    • /
    • pp.451-457
    • /
    • 2015
  • The study about the five viscera's "Syndromes due to Damage" and "Disease" of 『Donguibogam. Five viscera and Six Bowels』, with several existing information on the specificity of the five viscera, were discussed as the physiological characteristics and the pathological conjugation of the five viscera. The results were as follows. The five viscera keep Essence, Spirit, Qi, Blood, Ethereal soul, and Corporeal soul, and There inside the body and keeping in the center. Based on this, it serves to make the body to strengthen. So it can be understood in relation to meat and shells. Characteristics of the specificity of the five viscera is determined to see the eyes, nose, mouth, ears revealed the face and the body that protect the five viscera, and characteristics that in relation to the date or time or season, Also that determined in conjunction with the face color, skin condition. In 『Lingshu』, 『Nanjing』 "how do pathogen involvement in the disease of the five viscera" and "disease occurs spontaneously in the Main meridian of the five viscera " and "Syndromes due to Damage to the Five viscera" in 『Donguibogam. Five viscera and Six Bowels』, It was discussed about the physiology and the pathology that is caused by biological activity according to the characteristics of the five viscera specificity "Outer symptoms" of "Five viscera Disease" in 『Donguibogam. Five viscera and Six Bowels』 is the description of the characteristics of behavior and emotional characteristics of the specificity of the five viscera. Also if you use excessive functions associated with emotional that was fall in consumptive disease.

Eco-physiological Characteristics of Rice Leaves and Wind Damage by Typhoon (태풍에 의한 벼 엽신손상과 엽신 특성과의 관계)

  • 양의석;강양순;정연태;정근식
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.33 no.2
    • /
    • pp.201-204
    • /
    • 1988
  • To find out the relationship between the eco-physiological characteristics and wind damage of rice leaves by typhoon 'Thelma' occurred at young panicle formation stage of rice plant, the study was carried out. The rate of dead leaves by wind damage in Indica X Japonica varieties were higher than that in Jap. varieties. Ind. X Jap. varieties which had erect and broader leaves had the higher number of silicified cell, moisture loss and stomatal aperture in leaves. And the wind damage were positvely correlated with the characteristics such as the number of silicified cell (r=0.7546$\^$*/), rate of moisture loss (r=0.8343$\^$**/) and stomatal aperture (r=0.8460$\^$**/) of rice leaf blade etc.

  • PDF