• Title/Summary/Keyword: Physics Model

Search Result 1,601, Processing Time 0.03 seconds

Biological activities of some organometalic compounds as artificial nuclease (인공핵산 분해효소로서 몇 가지 유기금속 화합물들의 생물활성)

  • Sung, Nack-Do;Kim, Dae-Whang;Kwon, Byung-Mok;Kim, Tae-Young;Suh, Il-Hwan
    • The Korean Journal of Pesticide Science
    • /
    • v.4 no.1
    • /
    • pp.32-37
    • /
    • 2000
  • A series of transition metal complexes of 3,6-bis(6'-methyl-2'-pyridyl)pyridazine ($L^{1}$) and 3,6-bis(2'-pyridyl)pyridazine ($L^{2}$) as artificial nuclease, $1{\sim}8$ were synthesized. After determining of X-ray crystal structure, hydrolysis rate constants of phosphates, as DNA model compound and biological activities were confirmed. $L^{2}$-Zn(II) complex, 8 was shown the best hydrolysis rate constant. The $L^{2}$-Ni(II) complex, 5 and $L^{2}$-Co(II) complex, 6 showed the highest herbicidal activity against SCP (Scriptus Juncoids) with excellent tolerance to rice, ORY (Oryzae sativa L.). And the $L^{1}$-Co(II) complex, 2, $L^{1}$-Zn(II) complex, 4 and ligand ($L^{1}$ amp; $L^{2}$) displayed above 90% fungicidal activity against MAG (Magnaporthe grisea).

  • PDF

Analysis of Observational Cases Measured by MRR and PARSIVEL Disdrometer for Understanding the Physical Characteristics of Precipitation (강수의 물리적 특성 이해를 위한 MRR 및 PASIVEL 우적계의 관측사례 분석)

  • Cha, Joo-Wan;Chang, Ki-Ho;Oh, Sung-Nam;Choi, Young-Jean;Jeong, Jin-Yim;Jung, Jae-Won;Yang, Ha-Young;Bae, Jin-Young;Kang, Sun-Young
    • Atmosphere
    • /
    • v.20 no.1
    • /
    • pp.37-47
    • /
    • 2010
  • The methods measuring the precipitation drop size distribution(hereafter referred to as DSD) at Cloud Physics Observation System (CPOS) in Daegwallyeong are to use PARSIVEL (PARticle SIze and VELocity) disdrometer (hereafter referred to as PARSIVEL) and Micro Rain Radar (hereafter referred to as MRR). First of all, PARSIVEL and MRR give good correlation coefficients between their rain rates and those of rain gage: $R^2=0.93$ and 0.91, respectively. For the DSD, the rain rates are classified in 3 categories (Category 1: rr (Rain Rate) ${\leq}0.5\;mm\;h^{-1}$, Category 2: $0.5\;mm\;h^-1$ < rr < $4.0\;mm\;h^{-1}$, Category 3: rr ${\geq}4\;mm\;h^{-1}$). The shapes of PARSIVEL and MRR DSD are relatively most similar in category 2. In addition, we retrieve the vertical rain rate and liquid water content from MRR under melting layer, calculated by Cha et al's method, in Daegwallyeong ($37^{\circ}41{\prime}N$, $128^{\circ}45^{\prime}E$, 843 m ASL, mountain area) and Haenam ($34^{\circ}33^{\prime}N$, $126^{\circ}34^{\prime}E$, 4.6 m ASL, coast area). The vertical variations of rain rate and liquid water content in Daegwallyeong are smaller than those in Haenam. We think that this different vertical rain rate characteristic for both sites is due to the vertical different cloud type (convective and stratiform cloud seem dominant at Haenam and Daegwallyeong, respectively). This suggests that the statistical precipitation DSD model, for the application of weather radar and numerical simulation of precipitation processes, be considered differently for the region, which will be performed in near future.

Effects of GaAsAl Laser on the Pressure Pain Threshold in Rats (GaAsAl 레이저 자극이 흰쥐의 압통역치에 미치는 영향)

  • Song, Young-Wha;Lee, Young-Gu;Lim, Jong-Soo
    • Journal of Korean Physical Therapy Science
    • /
    • v.7 no.2
    • /
    • pp.533-543
    • /
    • 2000
  • This study was designed to evaluate the analgesic effect of low power GaAsAl laser on the pain threshold of mechanical stimulation using different treatment points, acupuncture point (zusanli) and non-acupuncture points(back). Furthermore, we investigated the analgesic effect of low power GaAsAl laser using the different duration and intensity of laser in mechanical stimulation induced pain behavior. The results were summarized as follows: 1. The threshold of mechanical stimulation was significantly increased by GaAsAl laser stimulation into zusanli point after 15 and 30 min after laser stimulation(P<05). However, the laser stimulation into non-acupoint did not affect the pain threshold of mechanical stimulation. with dose dependent manner. 2. In order to investigate the analgesic effects of BV depending upon different intensities of laser stimulation, the experimental animals were divided into three groups: 3 mW treated group, 6 mW treated group and 10 mW treated group. The low power GaAsAl laser stimulation was applied into zusanli acupoint for 30 min with different intensity of laser stimulation. Six and ten mW of laser stimulation significantly increased the pain threshold of mechanical stimulation at 15 min after laser stimulation as compared to that of control group(P<.05). Moreover, the analgesic effect of 10 mW laser stimulation was maintained for 30 min after laser stimulation (P<.05). 3. Finally, we tested the analgesic effect of 10 mW laser stimulation using different duration such as 10 min, 30 min or 1 hr after application of mechanical stimulation. In 30 min treatment group, the pain threshold of mechanical stimulation was increased at 15min and 30min after laser stimulation(P<.05). However, laser stimulation for 60 min dramatically increased the pain threshold of mechanical stimulation at 0 min after laser stimulation and the analgesic effect of laser stimulation was observed until 1 hr after laser stimulation. In conclusion, these data apparently demonstrate that low power GaAsAl laser has analgesic effect on mechanical induced pain model in rats. In addition, the treated point, intensity and duration of laser stimulation should be concerned before clinical application for pain management purpose.

  • PDF

An investigative study of enrichment reduction impact on the neutron flux in the in-core flux-trap facility of MTR research reactors

  • Xoubi, Ned;Darda, Sharif Abu;Soliman, Abdelfattah Y.;Abulfaraj, Tareq
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.469-476
    • /
    • 2020
  • Research reactors in-core experimental facilities are designed to provide the highest steady state flux for user's irradiation requirements. However, fuel conversion from highly enriched uranium (HEU) to low enriched uranium (LEU) driven by the ongoing effort to diminish proliferation risk, will impact reactor physics parameters. Preserving the reactor capability to produce the needed flux to perform its intended research functions, determines the conversion feasibility. This study investigates the neutron flux in the central experimental facility of two material test reactors (MTR), the IAEA generic10 MW benchmark reactor and the 22 MW s Egyptian Test and Research Reactor (ETRR-2). A 3D full core model with three uranium enrichment of 93%, 45%, and 20% was constructed utilizing the OpenMC particle transport Monte Carlo code. Neutronics calculations were performed for fresh fuel, the beginning of life cycle (BOL) and end of life cycle (EOL) for each of the three enrichments for both the IAEA 10 MW generic reactor and core 1/98 of the ETRR-2 reactor. Criticality calculations of the effective multiplication factor (Keff) were executed for each of the twelve cases; results show a reasonable agreement with published benchmark values for both reactors. The thermal, epithermal and fast neutron fluxes were tallied across the core, utilizing the mesh tally capability of the code and are presented here. The axial flux in the central experimental facility was tallied at 1 cm intervals, for each of the cases; results for IAEA 10 MW show a maximum reduction of 14.32% in the thermal flux of LEU to that of the HEU, at EOL. The reduction of the thermal flux for fresh fuel was between 5.81% and 9.62%, with an average drop of 8.1%. At the BOL the thermal flux showed a larger reduction range of 6.92%-13.58% with an average drop of 10.73%. Furthermore, the fission reaction rate was calculated, results showed an increase in the peak fission rate of the LEU case compared to the HEU case. Results for the ETRR-2 reactor show an average increase of 62.31% in the thermal flux of LEU to that of the HEU due to the effect of spectrum hardening. The fission rate density increased with enrichment, resulting in 34% maximum increase in the HEU case compared to the LEU case at the assemblies surrounding the flux trap.

Review on the Three-Dimensional Magnetotelluric Modeling (MT 법의 3차원 모델링 개관)

  • Kim, Hee-Joon;Nam, Myung-Jin;Song, Yoon-Ho;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.2
    • /
    • pp.148-154
    • /
    • 2004
  • This article reviews the development of three-dimensional (3-D) magnetotelluric (MT) modeling. The 3-D modeling of electromagnetic fields is essential in understanding the physics of MT soundings, and in implementing an inversion method to reconstruct a 3-D resistivity image. Although various numerical schemes have been developed over the last two decades, practical methods have been quite limited. However, the recent rapid improvement in computer speed and memory, as well as the advance in iterative solution algorithms for a large system of equations, makes it possible to model the MT responses of complex 3-D structures, which have been very difficult to simulate before. The use of staggered grids in finite difference method has become popular, conserving a magnetic flux and an electric current and allowing for realistic discontinuous fields. The convergence of numerical solutions has been greatly accelerated by adopting Krylov subspace methods, proper preconditioning techniques, and static divergence corrections. The vector finite-element method using edge elements is also free from the discontinuity problem, and seems a natural choice for modeling complex structures including irregular topography because its flexibility allows one to capture full geometric complexity.

Photocurrent study on the splitting of the valence band and growth of $CdGa_2Se_4$ single crystal thin film by hot wall epitaxy (Hot Wall epitaxy(HWE)법에 의한 $CdGa_2Se_4$ 단결정 박막의 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Park, Chang-Sun;Hong, Kwang-Joon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.5
    • /
    • pp.179-186
    • /
    • 2007
  • Single crystal $CdGa_2Se_4$ layers were grown on a thoroughly etched semi-insulating GaAs(100) substrate at $420^{\circ}C$ with the hot wall epitaxy(HWE) system by evaporating the polycrystal source of $CdGa_2Se_4$ at $630^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction(DCXD). The carrier density and mobility of single crystal $CdGa_2Se_4$ thin films measured with Hall effect by van der Pauw method are $8.27{\times}10^{17}cm^{-3},\;345cm^2/V{\cdot}s$ at 293 K, respectively. The photocurrent and the absorption spectra of $CdGa_2Se_4/SI$(Semi-Insulated) GaAs(100) are measured ranging from 293 K to 10 K. The temperature dependence of the energy band gap of the $CdGa_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation $E_g(T)=2.6400eV-(7.721{\times}10^{-4}eV/K)T^2/(T+399K)$. Using the photocurrent spectra and the Hopfield quasicubic model, the crystal field energy(${\Delta}cr$) and the spin-orbit splitting energy(${\Delta}so$) far the valence band of the $CdGa_2Se_4$ have been estimated to be 106.5 meV and 418.9 meV at 10 K, respectively. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1^-},\;B_{1^-},\;and\;C_{11}-exciton$ peaks.

한국원자력연구소 방사선방어기술 개발 및 연구 현황

  • Ha, Jeong-U
    • Journal of Radiation Protection and Research
    • /
    • v.15 no.1
    • /
    • pp.9-13
    • /
    • 1990
  • 1959년 한국원자력연구소가 창립됨과 동시에 &Health Physics&, 즉 보건물리라고 하는 명칭과 조직이 탄생되어, 방사선안전관리의 실무와 보건물리의 연구가 시작되었다. 최초 10년간은 선진제국의 보건물리분야의 연구와 기술을 추적하여 우리나라의 방사선안전관리 기술의 기초를 다지는 시기로서 개인방사선모니터링기술, 환경방사선(능) 모니터링기술 및 방사선방어용계측기기의 교정기술 개발에 중점을 두고 연구개발이 추진되었으며, TRIGA Mark-II 연구용원자로의 가동에 따라 원자로 생체차폐체의 건전성 검증에 관한 유익한 방사선량 측정자료도 얻게 되었다. 즉 이 기간은 방사선안전관리의 체제정비 및 기초기술 확립에 노력한 기간이었다. 1970년대는 원자력 연구개발에 대한 기본방향과 정책의 변경등으로 보건물리 연구조직은 방사선안전관리, 환경연구 그리고 방사화학분야로 분산되었으며, 그로인하여 연구개발활동은 거의 정체되어 겨우 방사선안전관리 실무만이 그 명맥을 유지하였다. 그 결과 우리나라 방사선안전관리 및 그와 관련된 연구개발의 기반이 흔들리게 되었으나, 그러한 환경하에서도 방사선량측정평가기술, 방사선차폐설계기술 및 원자로사고시 피폭선량평가기술의 선진화에 필요한 지식을 얻었으며, 방사선 안전관리에 유익한 실무경험도 축적하게 되었다. 1980년대는 통합된 원자력 연구개발체제의 구축으로 방사선작업종사자 및 일반공중의 피폭저감화 기술개발에 필요한 각종 최신기술을 도입하였고, 관리업무에 있어서도 측정의 정확도와 신뢰성향상 및 새로운 관리기술의 개발에 많은 노력을 한 결과, 유익한성과를 얻게된 기간이다. 특히, 이 기간은 방사선안전관리기술의 선진화를 위한 지식이 축적되어 90년대의 방사선안전관리기술자립화를 위한 전환기로서, 이와같이 축적된 기술은 원자력의 평화적 이용에 크게 기여할 것으로 기대된다.서 dithiothreitol를 투여한 군에서는 우라늄단독투여군에 비해 cretinine의 배설이 상당히 증가하였다(P<0.05). 6. 우라늄오염에 의한 신장의 소견에 있어 우라늄단독투여군은 근위곡세뇨관상피의 공포화 및 종창, microvilli와 brush border의 손실, 세뇨관 상피의 괴사가 관찰되었으며, 간장의 충혈, 중심성 괴사 및 모세관 확장증도 관찰되었다. 그리고 sodium bicarbonate와 생리적 식염수를 병행투여한 군과 우라늄을 투여하고 30분이 지나서 dithiothreitol를 투여한 군에서는 우라늄 단독투여군에 비해 높은 방호효과가 관찰되었으나 다른 실험군에서는 큰 효과가 없는 것으로 나타났다. 결론적으로 우라늄의 체내오염시에는 sodium bicarbonate와 생리적 식염수를 가능한 빨리 병행투여하거나 dithiothreitol을 체내오염후 30분이 지나서 투여하는 방법이 우라늄오염에 대한 제염에 매우 유효할 것으로 생각되며, 특히 우라늄에 의한 인체장해를 유의하게 경감시켜줄 것으로 사료되었다.내의 어떤 부위와도 관계가 되는 것으로 간주되는데 이것이 $(^3H)$ QNB가 $(^3H)$ NMS보다 높은 최대 결합능력 $(B_{max})$을 나타낼 이유이다. (b) 두 종류의 다른 제제에서 우리는 같은 양상의 결과를 관찰하었기에 결점이 많은 homogenates 제제보다는 intact cell aggregates 제제를 수용체 연구에 대한 새로운 실험모형(experiment model)으로 사용할 수 있는 가능성을 제시하고자 한다.$가 38.8%로 가장 많고, 그 다음이 ${\ulcorner}$l9세(歲)이후${\lrcorner}$가 25.2%로서 전체

  • PDF

Dosimetry and Three Dimensional Planning for Stereotactic Radiosurgery with SIEMENS 6-MV LINAC (6-MV선형가속기를 이용한 입체방사선수술의 선량측정 및 3차원적 치료계획)

  • Choi Dong-Rak;Cho Byong Chul;Suh Tae-Suk;Chung Su Mi;Choi Il Bong;Shinn Kyung Sub
    • Radiation Oncology Journal
    • /
    • v.11 no.1
    • /
    • pp.175-181
    • /
    • 1993
  • Radiosurgery requires integral procedure where special devices and computer systems are needed for localization, dose planning and treatment. The aim of this work is to verify the overall mechanical accuracy of our LINAC and develop dose calculation algorithm for LINAC radiosurgery. The alignment of treatment machine and the performance testing of the entire system were extensively carried out and the basic data such as percent depth dose, off-axis ratio and output factor were measured. A three dimensional treatment planning system for stereotactic radiosurgery has been developed. We used an IBM personal computer with C programming language (IBM personal system/2, Model 80386, IBM Co., USA) for calculating the dose distribution. As a result, deviations at isocenter on gantry and table rotation for our treatment machine were acceptable since they were less than 2 mm. According to the phantom experiments, the focusing isocenter were successful by the error of less than 2 mm. Finally, the mechanical accuracy of our three dimensional planning system was confirmed by film dosimetry in sphere phantom.

  • PDF

Preliminary Study on the Enhancement of Reconstruction Speed for Emission Computed Tomography Using Parallel Processing (병렬 연산을 이용한 방출 단층 영상의 재구성 속도향상 기초연구)

  • Park, Min-Jae;Lee, Jae-Sung;Kim, Soo-Mee;Kang, Ji-Yeon;Lee, Dong-Soo;Park, Kwang-Suk
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.5
    • /
    • pp.443-450
    • /
    • 2009
  • Purpose: Conventional image reconstruction uses simplified physical models of projection. However, real physics, for example 3D reconstruction, takes too long time to process all the data in clinic and is unable in a common reconstruction machine because of the large memory for complex physical models. We suggest the realistic distributed memory model of fast-reconstruction using parallel processing on personal computers to enable large-scale technologies. Materials and Methods: The preliminary tests for the possibility on virtual manchines and various performance test on commercial super computer, Tachyon were performed. Expectation maximization algorithm with common 2D projection and realistic 3D line of response were tested. Since the process time was getting slower (max 6 times) after a certain iteration, optimization for compiler was performed to maximize the efficiency of parallelization. Results: Parallel processing of a program on multiple computers was available on Linux with MPICH and NFS. We verified that differences between parallel processed image and single processed image at the same iterations were under the significant digits of floating point number, about 6 bit. Double processors showed good efficiency (1.96 times) of parallel computing. Delay phenomenon was solved by vectorization method using SSE. Conclusion: Through the study, realistic parallel computing system in clinic was established to be able to reconstruct by plenty of memory using the realistic physical models which was impossible to simplify.

Shielding Effectiveness of Magnetite Heavy Concrete on Cobalt-60 Gamma-rays

  • Lim, Yong-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.65-75
    • /
    • 1971
  • The gamma-ray shielding effects of magnetite concretes have been measured using a broad beam Co-60 gamma-ray source. Mathematical formulae for a trans-mission ratio-to-shield thickness relation were derived from the attenuation curve obtained experimentally and are I (x) = I (ο) exp(-$\mu$X) exp(1.03$\times$10$^{-1}$ X-3.38$\times$10$^{-3}$ X$^2$+5.29$\times$10$^{-5}$ X$^3$) when X< 20 cm, I (x) =I (ο) exp(-$\mu$X) exp(4.66$\times$10$^{-2}$ X+2.12$\times$10$^{-1}$ ) when X>20 cm. Here I (x) is radiation intensity after passing through a thickness X of absorber, I(o) is the initial radiation intensity, $\mu$ is the linear attenuation coefficient of magnetite concrete and is given by (0.0532$\rho$+ 0.0083)$^{4)}$ $cm^{-1}$ / in accordance with an earlier study, and X is the thickness of absorber. In addition, a model shield which is a rectangular magnetite concrete box with walls of 8cm thickness walls and internal demensions of 40$\times$40$\times$40 cm was constructed and its shielding effect has been measured. The emergent radiation flux appears to be greater with this configuration than with a slab shield of equal thickness.

  • PDF