• Title/Summary/Keyword: Physicochemical changes

Search Result 918, Processing Time 0.033 seconds

The Effects of Carbonate Minerals in Gully-pot Sediment on the Leaching Behavior of Heavy Metals Under Acidified Environment (우수관퇴적물에 함유된 탄산염광물이 산성환경에서의 중금속 용출거동에 미치는 영향 평가)

  • 이평구;유연희
    • Economic and Environmental Geology
    • /
    • v.35 no.3
    • /
    • pp.257-271
    • /
    • 2002
  • One of the main interests in relation to heavily contaminated gully-pot sediment in urban area is the short term mobility of heavy metals, which depends on the pH of acidic rainwater and on the buffering effects of carbonate minerals. The buffering effects of carbonates are determined by titration (acid addition). Leaching experiments are carried out in solutions with variable initial HN03 contents for 24h. The gully-pot sediment appears to be predominantly buffered by calcite and dolomite. In case of sediment samples, which highly contain carbonates, pH decreases more slowly with increasing acidity. On the other hand, for the sediment samples, which less contain carbonate minerals, pH rapidly drops until it reaches about 2 then it decreases slowly. The leaching reactions are delayed until more acid is added to compensate for the buffering effects of carbonates. The Zn, Cu, Pb and Mn concentrations of leachate rapidly increase with decreased pH, while Cd, Co, Ni, Cr and Fe dissolutions are very slow and limited. The solubility of heavy metals depends not only on thc pH values of leachatc but also on the speciation in which metals are associated with sediment particles. In slightly to moderately acid conditions, Zn, Cd, Co, Ni and Cu dissolutions become increasingly important. As deduced from leaching runs, the relative mobility of heavy metals at pH of 5 is found to be: Zn > Cd > Co > Ni > Cu » Pb > Cr, suggesting that moderately acid rainwater leach Zn, Cd, Co, Ni and Cu from thc contaminated gully-pot sediment, while Pb and Cr would remain fixed. The buffering effects of Ca- and Mg-carbonates play an important role in delaying as well as limiting the leaching reactions of heavy metals from highly contaminated gully-pot sediment. The extent of such a secondary environmental pollution will thus depends on how well the metals in sediment can be leached by somewhat acidic rain water. Changes in the physicochemical environments may result in the severe environmental pollution of heavy metals. These results are to be taken into account in the management of contaminated sediments during rainstorms.

Eco-friendly and efficient in situ restoration of the constructed sea stream by bioaugmentation of a microbial consortium (복합미생물 생물증강법을 이용한 인공해수하천의 친환경 효율적 현장 수질정화)

  • Yoo, Jangyeon;Kim, In-Soo;Kim, Soo-Hyeon;Ekpeghere, Kalu I.;Chang, Jae-Soo;Park, Young-In;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • v.53 no.2
    • /
    • pp.83-96
    • /
    • 2017
  • A constructed sea stream in Yeongdo, Busan, Republic of Korea is mostly static due to the lifted stream bed and tidal characters, and receives domestic wastewater nearby, causing a consistent odor production and water quality degradation. Bioaugmentation of a microbial consortium was proposed as an effective and economical restoration technology to restore the polluted stream. The microbial consortium activated on site was augmented on a periodic basis (7~10 days) into the most polluted site (Site 2) which was chosen considering the pollution level and tidal movement. Physicochemical parameters of water qualities were monitored including pH, temperature, DO, ORP, SS, COD, T-N, and T-P. COD and microbial community analyses of the sediments were also performed. A significant reduction in SS, COD, T-N, and COD (sediment) at Site 2 occurred showing their removal rates 51%, 58% and 27% and 35%, respectively, in 13 months while T-P increased by 47%. In most of the test sites, population densities of sulfate reducing bacterial (SRB) groups (Desulfobacteraceae_uc_s, Desulfobacterales_uc_s, Desulfuromonadaceae_uc_s, Desulfuromonas_g1_uc, and Desulfobacter postgatei) and Anaerolinaeles was observed to generally decrease after the bioaugmentation while those of Gamma-proteobacteria (NOR5-6B_s and NOR5-6A_s), Bacteroidales_uc_s, and Flavobacteriales_uc_s appeared to generally increase. Aerobic microbial communities (Flavobacteriaceae_uc_s) were dominant in St. 4 that showed the highest level of DO and least level of COD. These microbial communities could be used as an indicator organism to monitor the restoration process. The alpha diversity indices (OTUs, Chao1, and Shannon) of microbial communities generally decreased after the augmentation. Fast uniFrac analysis of all the samples of different sites and dates showed that there was a similarity in the microbial community structures regardless of samples as the augmentation advanced in comparison with before- and early bioaugmentation event, indicating occurrence of changing of the indigenous microbial community structures. It was concluded that the bioaugmentation could improve the polluted water quality and simultaneously change the microbial community structures via their niche changes. This in situ remediation technology will contribute to an eco-friendly and economically cleaning up of polluted streams of brine water and freshwater.

Antioxidant Activity and Quality Characteristics of Rice Wine Cakes Cookies with Different Ratio of Astragalus memvranaceus (황기 첨가 비율에 따른 황기주박 쿠키의 품질특성 및 항산화 활성)

  • Lim, Ji-Min;Kwon, Hyuk-Jin;Yong, Si-Eun;Choi, Ji-Ho;Lee, Choong-Hwan;Kim, Tack-Joong;Park, Pil-Sang;Choi, Yoon-Hee;Kim, Eun-Mi;Park, Shin-Young
    • Korean journal of food and cookery science
    • /
    • v.29 no.1
    • /
    • pp.11-18
    • /
    • 2013
  • In this study, rice wine cakes (Jubak) was produced using with Astragali memvranaceus with excellent antioxidant and antidiabetic effects and produced. This Jubak was applied to improve the cookies of modern taste and well-being products. The cookies according to the different ratio (added 0-1.0%) of Astragali memvranaceus and investigated the physicochemical characteristics, sensory evaluation, DPPH free radical scavenging activities, polyphenol and flavonoid contents. There were little changes in pH and density. The hardness of all treated cookies increased with Astragali memvranaceus Jubak(AJ) containing of different moisture contents. In color, L and a values of most cases increased in most of the treatments, but b value was reduced. In the sensory evaluation, the flavor and total scores showed the highest in 0.5% AJ cookies. But the higher proportion of AJ cookies that had unique flavors and tastes, so the total acceptance score decreased. The polyphenol and flavonoid contents increased in the higher proportion of AJ. In DPPH free radical scavenging activities, the control (no Jubak added) was 44%, and containing of 1% AJ cookies showed 82%. In conclusion, our study suggests that 0.5% in addition of AJ increased positive attributes and functional to cookies.

Physico-chemical and Sensory Characteristics of Cooked Sausage Substituted with KCl or MgCl2 for NaCl (KCl 또는 MgCl2의 NaCl 대체 소시지의 이화학적 및 관능적 특성)

  • Jin, Sang-Keun;Kim, Il-Suk;Hur, In-Chul;Nam, Sang-Hae;Kang, Suk-Nam;Shin, Daekeun
    • Journal of agriculture & life science
    • /
    • v.45 no.5
    • /
    • pp.81-89
    • /
    • 2011
  • This study was carried out to investigate changes in physicochemical and sensory properties of cooked sausages replaced sodium chloride (NaCl) to potassium chloride (KCl) or magnesium chloride ($MgCl_2$) during storage for 30 days under $4^{\circ}C$. All sausages were prepared with different combination of salts as follow; CTL (1.5% NaCl), KCL (0.9% NaCl+0.6% KCl), MCL (0.9% NaCl+0.6% $MgCl_2$), KML (0.9% NaCl+0.3% KCl+0.3% $MgCl_2$) and PST (1.5% PanSalt). Among sausages moisture content in KML was the highest (p<0.05). Lightness and redness in CTL were lower than those of other treatments, but MCL and KML containing $MgCl_2$ showed higher CIE $L^*$ and $a^*$ values than CTL. The pH in CTL was the highest during storage, however, no significant difference was determined between two treatments, MCL and KML (p>0.05). Crude fat content and water holding capacity (WHC), hardness and cohesiveness of MCL sausages were higher than those of CTL. In sensory characteristics of cooked sausages, saltness in MCL was the lowest during 10 and 20 days of storage (p<0.05). Yellowness in PST was lower than other treatmeants. Gumminess and chewiness of texture property of sausages from MCL and KML were higher than CTL. The results indicate that the replacement of NaCl by KCl improved texture, but meat color was not improved as expected. In contrast, the replacement of NaCl by $MgCl_2$ enhanced color, texture and WHC, whereas partial replacement of NaCl by $MgCl_2$ must reduce bitter taste as compared to sausages manufactured with a NaCl only. Therefore, $MgCl_2$ may be a salt replacing NaCl in cooked pork sausages.

Study on the storage stability of the white internal organs using natural materials (천연소재를 활용한 백내장의 저장성 증진 연구)

  • Han, Ye-Jin;Ku, Su-Kyung;Kim, Tae-Kyung;Sung, Jung-Min;Kim, Young-Boong;Choi, Yun-Sang
    • Food Science and Preservation
    • /
    • v.25 no.1
    • /
    • pp.145-154
    • /
    • 2018
  • The purpose of this study was to investigate the ability of natural antioxidants as stabilizers for meat by-products to prevent lipid oxidation. The white internal organs were evaluated using different treatments: no antioxidant (control), ascorbic acid (T1), Artemisiacapillaris Thunb. (T2), Opuntia (T3), Schisandra chinensis (T4), and Saururuschinensis (Lour.) Baill (T5). Antioxidant activities were analyzed by measuring DPPH contents, superoxide anion radical levels, nitrate scavenging activities, and total polyphenol contents. T1 and T2 showed higher antioxidant activities and total polyphenol contents (p<0.05). Additionally, changes in physicochemical properties (pH, color, volatile basic nitrogen [VBN], and thiobarbituric acid reactive substances [TBARS]) and microbiological aspects in white internal organs processed with antioxidants were investigated. As storage time increased, the CIE $a^*$ and $b^*$ values of the white internal organs processed with natural antioxidants were decreased (p<0.05), and CIE $L^*$ values were low, particularly for the T3 sample relative to that in the control. Moreover, the pH, VBN, and TBARS values of samples T2-T5 were increased after 7 days of storage, but showed low values compared with those of the control (p<0.05). Moreover, compared with the control group, the treatments showed antimicrobial effects. Our results indicated that these natural antioxidants could be used as lipid oxidation stabilizers of meat by-products during storage and that Artemisiacapillaris Thunb. and Opuntia may have applications as natural antioxidants in the meat by-product industry.

Adsorptive Removal of Radionuclide Cs+ in Water using Acid Active Clay (산활성 점토를 이용한 수중의 방사성 핵종 Cs+ 흡착 제거)

  • Lee, Jae Sung;Kim, Su Jin;Kim, Ye Eun;Kim, Seong Yun;Kim, Eun;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.2
    • /
    • pp.78-85
    • /
    • 2022
  • Natural white clay was treated with 6 M of H2SO4 and heated at 80℃ for 6 h under mechanical stirring and the resulting acid active clay was used as an adsorbent for the removal of Cs+ in water. The physicochemical changes of natural white clay and acid active clay were observed by X-ray Fluorescence Spectrometry (XRF), BET Surface Area Analyser and Energy Dispersive X-line Spectrometer (EDX). While activating natural white clay with acid, the part of Al2O3, CaO, MgO, SO3 and Fe2O3 was dissolved firstly from the crystal lattice, which bring about the increase in the specific surface area and the pore volume as well as active sites. The specific surface area and the pore volume of acid active clay were roughly twice as high compared with natural white clay. The adsorption of Cs+ on acid active clay was increased rapidly within 1 min and reached equilibrium at 60 min. At 25 mg L- of Cs+ concentration, 96.88% of adsorption capacity was accomplished by acid active clay. The adsorption data of Cs+ were fitted to the adsorption isotherm and kinetic models. It was found that Langmuir isotherm was described well to the adsorption behavior of Cs+ on acid active clay rather than Freundlich isotherm. For adsorption Cs+ on acid active clay, the Langmuir isotherm coefficients, Q, was found to be 10.52 mg g-1. In acid active clay/water system, the pseudo-second-order kinetic model was more suitable for adsorption of Cs+ than the pseudo-first-order kinetic model owing to the higher correlation coefficient R2 and the more proximity value of the experimental value qe,exp and the calculated value qe,cal. The overall results of study showed that acid active clay could be used as an efficient adsorbent for the removal of Cs+ from water.

Physicochemical Properties of Protaetia brevitarsis sinulensis Larvae Reared with Feed Including Noni and Nipa Palm (노니와 해죽순 급이가 흰점박이꽃무지 유충에 미치는 물리화학적 특성)

  • Kim, Sam Woong;Je, Kyeong Min;Kim, Dul Nam;Kim, Tae Wan;Bang, Kyu Ho;Chi, Won-Jae;Bang, Woo Young;Kim, Jang Hyeon;Yang, Chul Woong;Kim, Il-Suk
    • Journal of Life Science
    • /
    • v.32 no.10
    • /
    • pp.784-791
    • /
    • 2022
  • This study observed changes in the body composition of Protaetia brevitarsis sinulensis larvae when reared with feed that included noni and nipa palm. Compared to the control group, the death rate and product yield of the treatment group were improved after the larval fasting process. The brightness of the larval powder of the treatment group increased, but the redness decreased. The crude fat content of the treated group was slightly increased according to the assays of the general components, but the mineral content was significantly increased. The total structural amino acids of the treatment group decreased, but the total free amino acids increased. The structural amino acids generally tended to decrease in the treatment group. However, the free amino acids showed no specific differences. Among the free amino acids, tryptophan, phosphoserine, and methylhistidine were highly increased in the treatment group, whereas threonine, methionine, and asparagine showed the opposite results. Among the polyunsaturated fatty acids, eicosapentaenoic acid (C20:5n3) of omega-3 was increased in the treatment group, but the omega-6 series was decreased. Since minerals, total free amino acids, and omega-3 fatty acids in the treatment group were increased compared to the control group, we suggest that noni and nipa palm can potentially be applied to the production of functionally improved substances as additional sources of feed for Protaetia brevitarsis sinulensis larvae.

Microbial Influence on Soil Properties and Pollutant Reduction in a Horizontal Subsurface Flow Constructed Wetland Treating Urban Runoff (도시 강우유출수 처리 인공습지의 토양특성 및 오염물질 저감에 따른 미생물 영향 평가)

  • Chiny. C. Vispo;Miguel Enrico L. Robles;Yugyeong Oh;Haque Md Tashdedul;Lee Hyung Kim
    • Journal of Wetlands Research
    • /
    • v.26 no.2
    • /
    • pp.168-181
    • /
    • 2024
  • Constructed wetlands (CWs) deliver a range of ecosystem services, including the removal of contaminants, sequestration and storage of carbon, and enhancement of biodiversity. These services are facilitated through hydrological and ecological processes such as infiltration, adsorption, water retention, and evapotranspiration by plants and microorganisms. This study investigated the correlations between microbial populations, soil physicochemical properties, and treatment efficiency in a horizontal subsurface flow constructed wetland (HSSF CW) treating runoff from roads and parking lots. The methods employed included storm event monitoring, water quality analysis, soil sampling, soil quality parameter analysis, and microbial analysis. The facility achieved its highest pollutant removal efficiencies during the warm season (>15℃), with rates ranging from 33% to 74% for TSS, COD, TN, TP, and specific heavy metals including Fe, Zn, and Cd. Meanwhile, the highest removal efficiency was 35% for TOC during the cold season (≤15℃). These high removal rates can be attributed to sedimentation, adsorption, precipitation, plant uptake, and microbial transformations within the CW. Soil analysis revealed that the soil from HSSF CW had a soil organic carbon content 3.3 times higher than that of soil collected from a nearby landscape. Stoichiometric ratios of carbon (C), nitrogen (N), and phosphorus (P) in the inflow and outflow were recorded as C:N:P of 120:1.5:1 and 135.2:0.4:1, respectively, indicating an extremely low proportion of N and P compared to C, which may challenge microbial remediation efficiency. Additionally, microbial analyses indicated that the warm season was more conducive to microorganism growth, with higher abundance, richness, diversity, homogeneity, and evenness of the microbial community, as manifested in the biodiversity indices, compared to the cold season. Pollutants in stormwater runoff entering the HSSF CW fostered microbial growth, particularly for dominant phyla such as Proteobacteria, Actinobacteria, Acidobacteria, and Bacteroidetes, which have shown moderate to strong correlations with specific soil properties and changes in influent-effluent concentrations of water quality parameters.