• Title/Summary/Keyword: Physically-based Simulation

Search Result 139, Processing Time 0.034 seconds

Development of Downstream Turbid Water Management System Using SWAT and KoRiv1 Dynamic Water Quality Simulation Model (SWAT 및 KoRiv1 모형을 활용한 하류하천 탁도관리 시스템구축)

  • Noh, Joon-Woo;Kim, Jeong-Kon;Lee, Sang-Uk
    • Journal of Environmental Science International
    • /
    • v.18 no.9
    • /
    • pp.1035-1043
    • /
    • 2009
  • High turbid water in the River has been one of the major concerns to the downstream residence. Especially in the Nakdong River basin severe turbid water problem occurred in year 2002 and 2003 due to the typhoon Rusa and Maemi consecutively. The main objective of this study is to develop turbid water management system in reservoir downstream of the Nakdong River combining physically based semi-distributed hydrologic simulation model SWAT with 1-dimensional dynamic water quality simulation model. SWAT model covers the area from the upstream of the Imha and Andong reservoir to the Gumi gage station for the purpose of estimating flow rates and suspended sediment of the tributaries. From year 1999 to 2007 runoff simulation for 8 years $R_{eff}$ and $R^2$ ranges $0.46{\sim}0.9$, $0.54{\sim}0.99$ respectively. Through the linkage of models, outputs of SWAT model such as suspended sediment and flow rates of the tributaries can be incorporated into the 1-dimensional dynamic water quality simulation model, KoRiv1 to support joint reservoir operation considering the turbidity released from Imha and Andong reservoir. The applicability of model simulation has been tested for year 2006 and compared with measured data.

A New Method of Collision Mode Evolution for Three-Dimensional Rigid Body Impact With Friction

  • Park, Jong-Hoon;Chung, Wan-Kyun;Youm, Young-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1769-1775
    • /
    • 2004
  • In presence of collision between two rigid bodies, they exhibit impulsive behavior to generate physically feasible state. When the frictional impulse is involved, collision resolution can not be easily made based on a simple Newton's law or Poisson's law, mainly due to possible change of collision mode during collision, For example, sliding may change to sticking, and then sliding resumes. We first examine two conventional methods: the method of mode evolution by differential equation, and the other by linear complementarity programming. Then, we propose a new method for mode evolution by solving only algebraic equations defining mode changes. Further, our method attains the original nonlinear impulse cone constraint. The numerical simulation will elucidate the advantage of the proposed method as an alternative to conventional ones.

  • PDF

English Input Keypad Method Using Picker -Based Interface

  • Kwon, Soon-Kak;Kim, Heung-Jun
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.11
    • /
    • pp.1383-1390
    • /
    • 2015
  • By according to the development of the mobile devices, a touch screen provides the variety of inputting character and the flexibility of user interface. Currently, the physically simple touch method is widely used for English input but this simple touch is not increasing the variety of inputs and flexibility of the user interfaces. In this paper, we propose a new method to input English characters continuously by recognizing gestures instead of the simple touches. The proposed method places the rotational pickers on the screen for changing the alphabetical sequence instead of the keys and inputs English characters through the flick gestures and the touches. Simulation results show that the proposed keypad method has better performance than the keypad of the conventional methods.

An Efficient Collision Queries in Parallel Close Proximity Situations

  • Kim, Dae-Hyun;Choi, Han-Soo;Kim, Yeong-Dong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2402-2406
    • /
    • 2005
  • A collision query determines the intersection between given objects, and is used in computer-aided design and manufacturing, animation and simulation systems, and physically-based modeling. Bounding volume hierarchies are one of the simplest and most widely used data structures for performing collision detection on complex models. In this paper, we present hierarchy of oriented rounded bounding volume for fast proximity queries. Designing hierarchies of new bounding volumes, we use to combine multiple bounding volume types in a single hierarchy. The new bounding volume corresponds to geometric shape composed of a core primitive shape grown outward by some offset such as the Minkowski sum of rectangular box and a sphere shape. In the experiment of parallel close proximity, a number of benchmarks to measure the performance of the new bounding box and compare to that of other bounding volumes.

  • PDF

Aerodynamic Analysis of Passenger Car with High Accuracy Using H-refinement (H-분할법을 이용한 승용차의 고정도 공력특성 해석)

  • 김태훈;정수진
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.33-41
    • /
    • 2000
  • Three dimensional flow fields around passenger car body was computed by PAM-FLOW, well-known and validated computer program for thermal and fluid analysis. Regarding the computational method, a Navier-Stokes solver based on finite element method with various turbulent models and adaptive grid technique (H-refinement)was adopted. The results were physically reasonable and compared with experimental data, giving good agreement. It was found that three dimensional flow simulation with H-refinement technique had potential for prediction of low fie이 around vehicle and the ability to predict vortex in the wake, which is vital for CFD to be used for automobile aerodynamic calculation.

  • PDF

A cloth simulation method using adaptive mesh size control depending on the system performance (시스템의 성능에 따라 적절한 메쉬 크기 조절이 가능한 천 시뮬레이션 방법)

  • 김대목;유관우;이종원;백낙훈
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.529-531
    • /
    • 2001
  • 물리기반 모델링(physically based modeling)기법은 현실 세계에서 볼 수 있는 물체의 다양한 움직임을 물리 수식을 통해 사실적으로 표현 할 수 있다는 장점을 가지고 있다. 그러나 이 기법을 적용하기 위해서는 많은 계산량을 필요로 하기 때문에 사용하는 시스템의 성능에 의존적이다. 예를 들어, 동일한 천 동작 알고리즘과 메쉬 크기를 가진 시스템을 서로 다른 성능을 가진 시스템에서 작동할 경우, 시스템의 성능에 따라 서로 다른 프레임 수를 나타낸다. 즉, 성능이 낮은 시스템에서는 계산 시간이 많아지기 때문에 느린 결과를 생성하게 된다. 반면에 성능이 높은 시스템에서는 상대적으로 계산 시간이 적기 때문에 보다 빠른 결과를 얻을 수 있다. 본 논문에서는 이러한 문제점을 해결하기 위해 사용자의 요구에 맞는 프레임 속도를 보장할 수 있는 적합한 메쉬 크기로 구성하여 동작하도록 하는 시스템을 제안한다.

  • PDF

Comparing BRDF Models: Representation of Measured BRDF (BRDF 모델비교: 측정 BRDF의 표현을 중심으로)

  • Lee, Joo-Haeng;Kim, Sung-Soo;Park, Hyung-Jun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.5
    • /
    • pp.346-354
    • /
    • 2009
  • BRDF (bidirectional reflectance distribution function) is critical in realistic simulation of material appearances since it models the directional characteristics of reflection of light. Although many BRDF models have been proposed so far, it is still not easy to find one specific model that could represent all the reflection properties of real materials such as generalized diffusion, off-specular reflection, Fresnel effect, and back scattering. In this paper, we compare three BRDF models including B-spline volume BRDF (BVB), Cook-Torrance, and Lafortune in their ability to represent the measured BRDF data for physically-based rendering. We show that B-spline volume BRDF surpass the others in quality of data fitting and rendering, especially for materials without specular reflections.

Identification of vibration System With Stiffness and Damping Nonlinearity (비선형 강성 및 감쇠 특성을 갖는 진동 시스템의 규명)

  • 이병림;이재응
    • Journal of KSNVE
    • /
    • v.10 no.1
    • /
    • pp.144-152
    • /
    • 2000
  • The identification of a nonlinear vibration system based on the time domain parametric model has been widely studied in recent years. In most of the studies, the NARMAX model has been used for the identification of a nonlinear system. However, the computational load for the identification with this model is quite heavy. In this paper, a new modeling procedure for nonlinear system identification in discrete time domain is proposed. The proposed model has less initial nonlinear terms than NARMAX model, and the terms in the proposed model are derived from physically meaningful way. The performance of the proposed method is evaluated through the simulation, and the result shows that the proposed model can identify the nonlinear characteristics of the vibration system very will less computational effort.

  • PDF

Simulation of Surface Flow and Soil Erosion on a Forest Road Using KINEROS2 Model

  • Im, Sang-Jun;Lee, Sang-Ho;Kim, Dong-Yeob
    • Journal of agriculture & life science
    • /
    • v.43 no.4
    • /
    • pp.1-8
    • /
    • 2009
  • The physically based model KINEROS2 was applied to forest road segments for simulating hydrology and sediment production. Data on rainfall amounts, runoff volume, and sediment yields were collected at two small plots in the Yangpyong experimental watershed. The KlNEROS2 model can be parameterized to match the volume of surface flow and sediment yields during seven storm events. Model predictions of hydrology were in good agreement with the observed data at two plots in the year 1997 and 1998. A comparison between the observed and predicted sediment yields indicated that the model provided reasonable estimates, although the model tended to under-estimate for some storm events. The overall result shows that the KINEROS2 model properly represents the hydrology and sediment transport processes in the forest road segments.

A review on urban inundation modeling research in South Korea: 2001-2022 (도시침수 모의 기술 국내 연구동향 리뷰: 2001-2022)

  • Lee, Seungsoo;Kim, Bomi;Choi, Hyeonjin;Noh, Seong Jin
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.10
    • /
    • pp.707-721
    • /
    • 2022
  • In this study, a state-of-the-art review on urban inundation simulation technology was presented summarizing major achievements and limitations, and future research recommendations and challenges. More than 160 papers published in major domestic academic journals since the 2000s were analyzed. After analyzing the core themes and contents of the papers, the status of technological development was reviewed according to simulation methodologies such as physically-based and data-driven approaches. In addition, research trends for application purposes and advances in overseas and related fields were analyzed. Since more than 60% of urban inundation research used Storm Water Management Model (SWMM), developing new modeling techniques for detailed physical processes of dual drainage was encouraged. Data-based approaches have become a new status quo in urban inundation modeling. However, given that hydrological extreme data is rare, balanced research development of data and physically-based approaches was recommended. Urban inundation analysis technology, actively combined with new technologies in other fields such as artificial intelligence, IoT, and metaverse, would require continuous support from society and holistic approaches to solve challenges from climate risk and reduce disaster damage.