• Title/Summary/Keyword: Physically unclonable functions (PUFs)

Search Result 2, Processing Time 0.017 seconds

A Study of Quantitative Characterization of Physically Uncloanble Functions (물리적 복제 불가능 회로 정량적 특성 평가 방법 연구)

  • Moon-Seok Kim
    • Convergence Security Journal
    • /
    • v.23 no.5
    • /
    • pp.143-150
    • /
    • 2023
  • Applications on physically unclonable circuits (PUFs) for implementing and utilizing security protocols with hardware is on the rise. PUFs have the capability to perform functions such as authentication, prevention of replication, and secure storage of critical information in integrated circuits and security systems. Through the implementation of physically unclonable circuits, a wide range of security features, including confidentiality, integrity, and availability, can be applied. Therefore, PUFs are promising candidate to build secure integrated circuits and hardware systems. However, in order that PUFs possess security features, PUFs should possess characteristics such as unpredictability, uniqueness, and robustness characteristics. This study provides a detailed explanation and introduction of the methods to characterize the PUF properties. By applying the results, it becomes possible to quantitatively evaluate the characteristics of implemented PUFs and assess their availabilities for security system applications.

Fabrication of Low-Cost Physically Unclonable Function (PUF) Chip Using Multiple Process Variables (다중 공정변수를 활용한 저비용 PUF 보안 Chip의 제작)

  • Hong-Seock Jee;Dol Sohn;Ju-Won Yeon;Tae-Hyun Kil;Hyo-Jun Park;Eui-Cheol Yun;Moon-Kwon Lee;Jun-Young Park
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.5
    • /
    • pp.527-532
    • /
    • 2024
  • Physically Unclonable Functions (PUFs) provide a high level of security for private keys using unique physical characteristics of hardware. However, fabricating PUF chips requires numerous semiconductor processes, leading to high costs, which limits their applications. In this work, we introduce a low-cost manufacturing method for PUF security chips. First, surface roughening through wet-etching is utilized to create random variables. Additionally, physical vapor deposition is added to further enhance randomness. After PUF chip fabrication, both Hamming distance (HD) and Hamming weight (HW) are extracted and compared to verify the fabricated chip. It is confirmed that the PUF chip using two different multiple process variables demonstrates superior uniqueness and uniformity compared to the PUF security chip fabricated using only a single process variable.