• Title/Summary/Keyword: Physically Based Simulation

Search Result 139, Processing Time 0.021 seconds

Simulations of Proposed Shallow Trench Isolation using TCAD Tool (TCAD 툴을 이용한 제안된 얕은 트랜치 격리의 시뮬레이션)

  • Lee, YongJae
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.4
    • /
    • pp.93-98
    • /
    • 2013
  • In this paper, the proposed shallow trench isolation structures for high threshold voltage for very large scale and ultra high voltage integrated circuits MOSFET were simulated. Physically based models of hot-carrier stress and dielectric enhanced field of thermal damage have been incorporated into a TCAD tool with the aim of investigating the electrical degradation in integrated devices over an extended range of stress biases and ambient temperatures. As a simulation results, shallow trench structure were intended to be electric functions of passive, as device dimensions shrink, the electrical characteristics influence of proposed STI structures on the transistor applications become stronger the potential difference electric field and saturation threshold voltage.

Numerical Simulation of Boiling 2-Phase Flow in a Helically-Coiled Tube (나선형코일 튜브 비등2상 유동 수치해석)

  • Jo J. C.;Kim W. S.;Kim H. J.;Lee Y. K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.49-55
    • /
    • 2004
  • This paper addresses a numerical simulation of the flow and heat transfer in a simplified model of helically coiled tube steam generator using a general purpose computational fluid dynamic analysis computer code. The steam generator model is comprised of a cylindrical shell and helically coiled tubes. A cold feed water entered the tubes is heated up, evaporates. and finally become a superheated steam with a large amount of heat transferred continuously from the hot compressed water at higher pressure flowing counter-currently through the shell side. For the calculation of tube side two-phase flow field formed by boiling, inhomogeneous two-fluid model is used. Both the internal and external turbulent flows are simulated using the standard k-e model. The conjugate heat transfer analysis method is employed to calculate the conduction in the tube wall with finite thickness and the convections in the internal and external fluids simultaneously so as to match the fluid-wall-fluid interface conditions properly. The numerical calculations are peformed for helically coiled tubes of steam generator at an integral type pressurized water reactor under normal operation. The effects of tube-side inlet flow velocity are discussed in details. The results of present numerical simulation are considered to be physically plausible based on the data and knowledge from previous experimental and numerical studies where available.

  • PDF

An Improved Dynamics Model for Stone Skipping Simulation (물수제비 시뮬레이션을 위한 개선된 동역학 모델)

  • Lee, Nam-Kyung;Baek, Nak-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.9
    • /
    • pp.1382-1390
    • /
    • 2010
  • We can see interactions between rigid body and fluid every day, anywhere. This kind of rigid body-fluid simulation is one of the most difficult problems in physically-based modeling, mainly due to heavy computations. In this paper, we present a real-time dynamics model for simulating stone skipping, which is a popular rigid body-fluid interaction in the real world. In comparison to the previous works, our improved dynamics model supports the rotation of the stones and also computes frictional forces with respect to the air. We can simulate a realistic result for various user input by using proposed model. Additionally, we present a water surface model to show more realistic ripples interactively. Our methods can be easily adapted to other interactive dynamics systems including 3D game engines.

Regionalized Sensitivity Analysis of Extended TOPMODEL (확장 TOPMODEL의 영역화 민감도 분석)

  • Kim, Sang-Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.6
    • /
    • pp.741-755
    • /
    • 1998
  • An extension of TOPMODEL was developed for rainfall-runoff simulation in agricultural watersheds equipped with tile drains. Tile drain functions are incorporated into the framework of TOPMODEL. Nine possible flow generation scenarios are suggested for tile drained watershed and applied in the modeling procedure. In the model development process, the traditional physically based storage approach and a new approach using a transfer function for the simulation of the flow in the unsaturated zone were compared. In order to provide better insight into the simulation process, a regionalized sensitivity analysis was performed to test the performance of the model and to compare the behavior of the transfer function to that of the simple storage related formulation. The results of analysis show good performance of the transfer function approach. Since the rainfall-runoff response pattern tends to vary seasonally, seven events distributed throughout a year were used in the sensitivity analysis to investigate the seasonal variation of the hydrologic characteristics. It is found that the sensitivity of each parameter described by the model are varied seasonally.

  • PDF

FROM THE DIRECT NUMERICAL SIMULATION TO SYSTEM CODES - PERSPECTIVE FOR THE MULTI-SCALE ANALYSIS OF LWR THERMALHYDRAULICS

  • Bestion, D.
    • Nuclear Engineering and Technology
    • /
    • v.42 no.6
    • /
    • pp.608-619
    • /
    • 2010
  • A multi-scale analysis of water-cooled reactor thermalhydraulics can be used to take advantage of increased computer power and improved simulation tools, including Direct Numerical Simulation (DNS), Computational Fluid Dynamics (CFD) (in both open and porous mediums), and system thermalhydraulic codes. This paper presents a general strategy for this procedure for various thermalhydraulic scales. A short state of the art is given for each scale, and the role of the scale in the overall multi-scale analysis process is defined. System thermalhydraulic codes will remain a privileged tool for many investigations related to safety. CFD in porous medium is already being frequently used for core thermalhydraulics, either in 3D modules of system codes or in component codes. CFD in open medium allows zooming on some reactor components in specific situations, and may be coupled to the system and component scales. Various modeling approaches exist in the domain from DNS to CFD which may be used to improve the understanding of flow processes, and as a basis for developing more physically based models for macroscopic tools. A few examples are given to illustrate the multi-scale approach. Perspectives for the future are drawn from the present state of the art and directions for future research and development are given.

Detection of False Data Injection Attacks in Wireless Sensor Networks (무선 센서 네트워크에서 위조 데이터 주입 공격의 탐지)

  • Lee, Hae-Young;Cho, Tae-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.3
    • /
    • pp.83-90
    • /
    • 2009
  • Since wireless sensor networks are deployed in open environments, an attacker can physically capture some sensor nodes. Using information of compromised nodes, an attacker can launch false data injection attacks that report nonexistent events. False data can cause false alarms and draining the limited energy resources of the forwarding nodes. In order to detect and discard such false data during the forwarding process, various security solutions have been proposed. But since they are prevention-based solutions that involve additional operations, they would be energy-inefficient if the corresponding attacks are not launched. In this paper, we propose a detection method that can detect false data injection attacks without extra overheads. The proposed method is designed based on the signature of false data injection attacks that has been derived through simulation. The proposed method detects the attacks based on the number of reporting nodes, the correctness of the reports, and the variation in the number of the nodes for each event. We show the proposed method can detect a large portion of attacks through simulation.

Enhancement Techniques for GPU-Based Rendering of Participating Media (GPU 기반 반투과 매체 렌더링의 향상 기법)

  • Cha, Deuk-Hyun;Yi, Yong-Il;Ihm, In-Sung
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.12
    • /
    • pp.1165-1176
    • /
    • 2010
  • In order to realistically visualize such participating media as cloud, smoke, and gas, the light transport process must be physically simulated inside the media. While it is known that this process is well described physically through the volume rendering equation, it usually takes a great deal of computation time for obtaining high-precision solutions. Recently, GPU-based, fast rendering methods have been proposed for the realistic simulation of participating media, however, there still remain several problems to be resolved. In this article, we describe our rendering techniques applied to enhance the performances and features of our GPU-assisted participating media renderer, and analyze how such efforts have actually improved the renderer. The presented techniques will be effectively used in volume renderers for creating various digital contents in the special effects industries.

Performance Comparison of Particle Simulation Using GPU Between OpenGL and Unity (OpenGL과 Unity간의 GPU를 이용한 Particle Simulation의 성능 비교)

  • Kim, Min Sang;Sung, Nak-Jun;Choi, Yoo-Joo;Hong, Min
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.10
    • /
    • pp.479-486
    • /
    • 2017
  • Recently, GPGPU has been able to increase the degradation of computer performance, and it is now possible to run physically based real-time simulations on PCs that require high computational complexity. Physical calculations applied in physics simulation can be performed by parallel processing, and can be efficiently performed using parallel computation using Compute shader recently supported by OpenGL 4.3 and Unity 4.0. In this paper, we measure and compare the number of performance in real - time physics simulation in OpenGL running on various platforms and Unity, a content creation tool supporting various platforms. Particle simulation experiments show that particle simulation using Unity performs faster than 136.04%. It is expected that it will be able to select better development tools for future multi - platform support.

An effective online delay estimation method based on a simplified physical system model for real-time hybrid simulation

  • Wang, Zhen;Wu, Bin;Bursi, Oreste S.;Xu, Guoshan;Ding, Yong
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1247-1267
    • /
    • 2014
  • Real-Time Hybrid Simulation (RTHS) is a novel approach conceived to evaluate dynamic responses of structures with parts of a structure physically tested and the remainder parts numerically modelled. In RTHS, delay estimation is often a precondition of compensation; nonetheless, system delay may vary during testing. Consequently, it is sometimes necessary to measure delay online. Along these lines, this paper proposes an online delay estimation method using least-squares algorithm based on a simplified physical system model, i.e., a pure delay multiplied by a gain reflecting amplitude errors of physical system control. Advantages and disadvantages of different delay estimation methods based on this simplified model are firstly discussed. Subsequently, it introduces the least-squares algorithm in order to render the estimator based on Taylor series more practical yet effective. As a result, relevant parameter choice results to be quite easy. Finally in order to verify performance of the proposed method, numerical simulations and RTHS with a buckling-restrained brace specimen are carried out. Relevant results show that the proposed technique is endowed with good convergence speed and accuracy, even when measurement noises and amplitude errors of actuator control are present.

Simulation of dam inflow using a square grid and physically based distributed model (격자 기반의 물리적 분포형 모형을 이용한 댐 유입량 모의)

  • Choi, Yun Seok;Choi, Si Jung
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.4
    • /
    • pp.289-300
    • /
    • 2024
  • The purpose of this study is to evaluate the applicability of the GRM (Grid based rainfall-Runoff Model) to the continuous simulation by simulating the dam inflow. The GRM was previously developed for the simulation of rainfall-runoff events but has recently been improved to enable continuous simulation. The target watersheds are Chungju dam, Andong dam, Yongdam dam, and Sumjingang dam basins, and runoff models were constructed with the spatial resolution of 500 m × 500 m. The simulation period is 21 years (2001 to 2021). The simulation results were evaluated over the 17 year period (2005 to 2021), and were divided into three data periods: total duration, wet season (June to September), and dry season (October to May), and compared with the observed daily inflow of each dam. Nash-Sutcliffe efficiency (NSE), Kling-Gupta efficiency (KGE), correlation coefficient (CC), and total volume error (VE) were used to evaluate the fitness of the simulation results. As a result of evaluating the simulated dam inflow, the observed data could be well reproduced in the total duration and wet season, and the dry season also showed good simulation results considering the uncertainty of low-flow data. As a result of the study, it was found that the continuous simulation technique of the GRM model was properly implemented and the model was sufficiently applicable to the simulation of dam inflow in this study.