• Title/Summary/Keyword: Physical strength

Search Result 4,803, Processing Time 0.03 seconds

Rheological properties of flour dough containing roasted rice bran (볶은 쌀겨를 첨가한 밀가루 반죽의 rheology 특성)

  • Shin, Hyun-Kwang;Lee, Jeong-Hoon;Chung, Koo-Chun;Lee, Si-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.6
    • /
    • pp.587-593
    • /
    • 2018
  • This study was carried out to investigate the effect of roasted rice bran (RRB) on the rheological properties of bread dough. According to farinograph analysis, the consistency of the control sample was greatest. There were no significant differences in water absorption (p<0.05). Lower values of development time, stability, and time to breakdown, which were affected, by the addition of RRB, were observed for RRB-containing dough samples, compared to the control dough sample. Addition of RRB significantly increased the mixing tolerance index (MTI). According to rheofermentometer analysis, the values of H'm, $T^{\prime}_1$, and retention volume decreased with increase in the amount of RRB added. According to the rapid visco analyzer (RVA) analysis, peak viscosity, holding strength, and setback values were greater in the control than in the RRB-containing samples. The addition of RRB to the flour influenced rheological properties like fermentation volume and acidity. The total acidity increased with the increase in the amount of RRB added. The present study has indicated that there was no significant difference between the rheological properties of the control and 5% RRB-containing dough samples. Therefore, the addition of 5% RRB could be an effective way to produce functional flour bread without affecting its desirable physical properties.

Analysis of Physicochemical Properties and Firing Temperature for the Clay Bricks Excavated from the Maritime Province of Severia (연해주 콕샤로프카-1 평지성 출토 토벽의 물리화학적 특성 및 소성온도 분석)

  • Kim, So-jin;Heo, Jun-su;Kim, Jin-hyoung;Kim, Dong-hun;Han, Min-su
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.2
    • /
    • pp.206-219
    • /
    • 2013
  • This study aims to estimate firing temperature and physicochemical properties of the four clay bricks excavated from the Maritime Province of Siberia. Analysis result shows that the specimens are composed of clay, quartz and feldspar, and some specimens include carbonized organic materials which were probably added in order to enhance its physical strength in bricks. Major mineral components of the bricks are quartz, illite and clay minerals. The result identifying the existence of silimanite by XRD suggests that white material of the Koc 1 was painted for a certain purpose. Unlike most specimens which contained hematite, several samples contain Mullite. Such result suggests that some bricks were fired at high temperature. Furthermore, the results from TG analysis which does not display exothermic peak which appears at between $800^{\circ}C$ to $1,000^{\circ}C$ but display endothermic peak at $900^{\circ}C$ and it also confirms that they were exposed at $900^{\circ}C$ or higher.

Recycling of Coal Ash and Related Environmental Issues in Australia (호주의 석탄재 재활용 사례와 석탄재 재활용과 관련된 환경 문제)

  • Park, Jin Hee;Ji, Sang-Woo;Shin, Hee-Young;Jo, Hwanju;Ahn, Ji-Whan
    • Resources Recycling
    • /
    • v.28 no.4
    • /
    • pp.15-22
    • /
    • 2019
  • Coal combustion products are generated during coal combustion and can be grouped into fly ash and bottom ash depending on collection methods. Fly ash and bottom ash can be recycled for various purposes based on their characteristics. Australia is the fourth largest coal production country in the world and reuses coal ash as cement, concrete, mine filler, and agricultural soil amendment. When fly ash is used as a supplement for cement and concrete, strength of the cement and the durability of the concrete can be improved. Use of coal combustion product for mine backfill stabilizes underground mine voids and stores a large amount of coal ash in the voids. Because of alkalinity of coal combustion products, it can neutralize acid mine drainage when used for mine backfill. In addition, it can be used as an agricultural soil amendment to improve acidity and physical properties of the soil and to supply plant nutrients. Recycling of fly ash in Australia will be further expanded because of its low trace element contents that can be toxic to plants and low radioactive element contents existing within soil background concentrations. The characteristics of coal combustion products are related to the characteristics of the coal used for combustion, and since Korea imports coal from Australia, Korean coal combustion products also can be recycled for various purposes.

Research of Monitoring of Conservation Condition and Investigation Method of National Designated Heritage - Focusing on Regular Monitoring of National Designated Movable Cultural Heritage - (국가지정 지류문화재의 보존현황 파악 및 조사방안 연구 - 국가지정 동산문화재 정기조사를 중심으로 -)

  • Jeong, Seon-Hwa;Park, Sang-Kyu
    • Korean Journal of Heritage: History & Science
    • /
    • v.49 no.4
    • /
    • pp.196-217
    • /
    • 2016
  • This study was conducted to identify the state of conservation of the national paper heritages and to seek ways of conservation management, focusing on regular monitoring directly performed by the government on the national movable cultural heritages. Subjects for the investigation were limited to investigations conducted by both the Cultural Heritage Conservation Center and the Artistic Heritage Division in 2014 and 2015. Paper heritages are easily affected by temperature, humidity, lighting, etc. due to the nature of the material and can easily be damaged by physical strength; therefore stable conservation environment is essential and regular investigation on movable cultural heritages conducted according to the Cultural Heritage Protection Act is necessary to protect from contamination, being torn, bending, friction, or loss. Losing a chance for timely proper treatment will bring irrevocable result therefore strict management is necessary; continuous monitoring is also needed after treatment. Analysis on the pigments, materials and structures, detailed investigation, data establishment for conservation of cultural heritages and regular investigation should be done. Detailed data on the national cultural heritages will be a base of more reasonable conservation management system for the national paper heritages and will realize continuous improvement on regular investigation practice.

Effects of mixed supplementation on Hoveni dulcis Thunb extracts and Ginseng-Berry extracts on hangover curves (헛개과병추출물과 인삼열매추출물의 혼합 음료 섭취가 숙취해소에 미치는 효과)

  • Park, Noh-Hwan;Lee, Jeong-Ok;Cho, In-ho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.3
    • /
    • pp.359-367
    • /
    • 2019
  • The purpose of this study was to investigate the effects of ingestion of rabies and ginseng fruit extracts on alcohol hangover, liver damage protection, fatigue recovery, and physical strength improvement. A total of 64 volunteers aged over 20 were participated in this study and the randomized and repeated measures design method was used to divide a group of participants with a random assignment. All participants were divided into 4 groups (n=16) treated with hoveni dulcis thunb extract + ginseng berry extract (ARI 1000), hoveni dulcis thunb extract, ginseng berry extract, and placebo. As a result of respiratory alcohol concentration change, the group treated with ARI 1000 was significantly lower than the group treated with hoveni dulcis thunb extract, ginseng berry extract, and placebo in 1 hour of drinking, and significantly lower than the placebo group in 2 hours and 3 hours of drinking (p<0.05). After 2 and 3 hours of alcohol consumption, blood alcohol concentration of the group treated with rabies ARI 1000 was significantly lower than those of the other 3 groups (p <0.05). In conclusion, ingestion of ARI 1000 before drinking may significantly reduce the respiratory and blood alcohol concentrations, which may induce an effect on the hangover effect.

A Comparison of the Effects of Silica and Hydroxyapatite Nanoparticles on Poly(ε-caprolactone)-Poly(ethylene glycol)-Poly(ε-caprolactone)/Chitosan Nanofibrous Scaffolds for Bone Tissue Engineering

  • Hokmabad, Vahideh Raeisdasteh;Davaran, Soodabeh;Aghazadeh, Marziyeh;Alizadeh, Effat;Salehi, Roya;Ramazani, Ali
    • Tissue Engineering and Regenerative Medicine
    • /
    • v.15 no.6
    • /
    • pp.735-750
    • /
    • 2018
  • BACKGROUND: The major challenge of tissue engineering is to develop constructions with suitable properties which would mimic the natural extracellular matrix to induce the proliferation and differentiation of cells. Poly(${\varepsilon}$-caprolactone)-poly(ethylene glycol)-poly(${\varepsilon}$-caprolactone) (PCL-PEG-PCL, PCEC), chitosan (CS), nano-silica ($n-SiO_2$) and nano-hydroxyapatite (n-HA) are biomaterials successfully applied for the preparation of 3D structures appropriate for tissue engineering. METHODS: We evaluated the effect of n-HA and $n-SiO_2$ incorporated PCEC-CS nanofibers on physical properties and osteogenic differentiation of human dental pulp stem cells (hDPSCs). Fourier transform infrared spectroscopy, field emission scanning electron microscope, transmission electron microscope, thermogravimetric analysis, contact angle and mechanical test were applied to evaluate the physicochemical properties of nanofibers. Cell adhesion and proliferation of hDPSCs and their osteoblastic differentiation on nanofibers were assessed using MTT assay, DAPI staining, alizarin red S staining, and QRT-PCR assay. RESULTS: All the samples demonstrated bead-less morphologies with an average diameter in the range of 190-260 nm. The mechanical test studies showed that scaffolds incorporated with n-HA had a higher tensile strength than ones incorporated with $n-SiO_2$. While the hydrophilicity of $n-SiO_2$ incorporated PCEC-CS nanofibers was higher than that of samples enriched with n-HA. Cell adhesion and proliferation studies showed that n-HA incorporated nanofibers were slightly superior to $n-SiO_2$ incorporated ones. Alizarin red S staining and QRT-PCR analysis confirmed the osteogenic differentiation of hDPSCs on PCEC-CS nanofibers incorporated with n-HA and $n-SiO_2$. CONCLUSION: Compared to other groups, PCEC-CS nanofibers incorporated with 15 wt% n-HA were able to support more cell adhesion and differentiation, thus are better candidates for bone tissue engineering applications.

The Efficiency of Short Track-related Sports Injury Prevention Program on Non-contact Injury Incidence for Elite Short Track Speed Skaters (쇼트트랙 관련 스포츠 손상 예방프로그램이 엘리트 쇼트트랙 스피드 스케이팅 선수들의 비접촉성 손상 발생에 미치는 영향)

  • Kim, Eunkuk;Choi, Hokyung
    • 한국체육학회지인문사회과학편
    • /
    • v.58 no.2
    • /
    • pp.405-416
    • /
    • 2019
  • This study aimed to identify the efficiency of short track-related sports injury prevention program consisted of muscle strength and neuromuscular training on non-contact injury incidence and characteristics in knee and ankle joints and low back for elite short track speed skaters. Twenty-five short track athletes who belonged to G-City Team were participated in this study from Nov. 2017 to Jul. 2018. Information on their sports injuries occurred were collected and injury prevention program was applied in their warm-up every training sessions and competition. Also their symptom-level of knee and ankle joint and low back were measured by using OSTRC overuse injury questionnaire and Cumberland ankle instability(CAIT). The injury incidence rate after application of prevention program was 2.79 injuries/1,000 hour exposures(HEs), which was lower than before (3.04 injuries/1,000HEs). The OSTRC score (30.89±28.34 and 23.84±23.61, respectively) in knee and low back after application of prevention program were lower than before (58.47±26.77 and 52.36±21.55, respectively), and the CAIT score (13.47±6.07) in ankle joint after application of program was higher than before (16.26±7.28), which means that their symptom-level was alleviated with sports injury prevention program. In conclusion, the sports injury prevention program designed for short track's motion and characteristic can have positive influences on the occurrence of non-contact injury for short track speed skaters.

Evaluation of 12nm Ti Layer for Low Temperature Cu-Cu Bonding (저온 Cu-Cu본딩을 위한 12nm 티타늄 박막 특성 분석)

  • Park, Seungmin;Kim, Yoonho;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.3
    • /
    • pp.9-15
    • /
    • 2021
  • Miniaturization of semiconductor devices has recently faced a physical limitation. To overcome this, 3D packaging in which semiconductor devices are vertically stacked has been actively developed. 3D packaging requires three unit processes of TSV, wafer grinding, and bonding, and among these, copper bonding is becoming very important for high performance and fine-pitch in 3D packaging. In this study, the effects of Ti nanolayer on the antioxidation of copper surface and low-temperature Cu bonding was investigated. The diffusion rate of Ti into Cu is faster than Cu into Ti in the temperature ranging from room temperature to 200℃, which shows that the titanium nanolayer can be effective for low-temperature copper bonding. The 12nm-thick titanium layer was uniformly deposited on the copper surface, and the surface roughness (Rq) was lowered from 4.1 nm to 3.2 nm. Cu bonding using Ti nanolayer was carried out at 200℃ for 1 hour, and then annealing at the same temperature and time. The average shear strength measured after bonding was 13.2 MPa.

A Study on the Competition of the World Women's Handball Championship Using Bigdata : Focused on the top 5 teams of the 2007-2019 World Women's Handball Championship (빅데이터를 활용한 여자핸드볼선수권대회 전력 비교 연구 -2007~2019년 세계여자핸드볼선수권대회 상위 5개팀과 대한민국을 중심으로-)

  • Kang, Yong-Gu;Kwak, Han-Pyong
    • Journal of Industrial Convergence
    • /
    • v.19 no.1
    • /
    • pp.147-158
    • /
    • 2021
  • This study was conducted seven times from 2007 to the 2019 Women's World Handball Championships to analyze and strengthen the strength of the Korean women's handball team through the analysis of the top five countries' strengths. Among the 41 national teams participating in the World Women's Handball Championship, a total of five national teams, including the Netherlands, Norway, Russia, Spain, and France, were selected for the final study. Among the records provided by the International Handball Federation (IHF), the ranking was selected by analyzing the competition records of 41 participating countries, and technical statistics and frequency analysis were conducted using the SPSS/PC+ Ver21.0 program. based on the accumulated records of the top five women's handball competitions, handball attack and defense strategies that can make up for the inferiority in future physical conditions are needed and detailed follow-up studies are needed. Also, we hope to use it as a basic resource for improving the performance of Korean women's handball players and to play a key role in enhancing the level of women's handball at the 2021 Tokyo Olympics.

The Effect of the Insole Height on Lower Limb Joint Angle and Muscle Activity at Landing when the Maximal Ground Reaction Force of Male in Their 20s (착지 동작 시 깔창 높이가 20대 남성의 하지 관절 각도와 근활성도에 미치는 영향)

  • Yoo, Kyung-Tae
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.12
    • /
    • pp.132-139
    • /
    • 2020
  • The purpose of this study is to analyze the effect of the height and insole height upon landing on the lower limb joint angle and muscle activity during maximum ground repulsion in young men. For a male in their twenties, a landing motion was performed with a force plate on a 40cm-high platform by wearing one of 0, 3, 5cm polyurethane insoles per week for a total of 3 weeks. During the landing motion, the joint angle of the lower extremities and the muscle activity of the rectus femoris, biceps femoris, anterior tibialis and calf muscles were measured during the maximum ground repulsion. In order to compare the changes in the joint angle and muscle activity of the lower limbs according to the height of the insole, a one-way ANOVA with repetitive factors was performed. As a result of the analysis of the lower limb joint angle, the higher the height of the insole affected the angle of the left ankle joint. As a result of the muscle activity analysis, the higher the height of the insole affected the right anterior tibialis muscle and biceps femoris. It is thought that it is possible to protect the body when landing through sufficient muscle strength increase of the lower limb muscles. As the angle of the affected muscle and lower limb joint may be different depending on the type of insole, it is considered necessary to study it.