• Title/Summary/Keyword: Physical property test

Search Result 297, Processing Time 0.024 seconds

Turfgrass Establishment of USGA Putting Greens Related with Soil Physical Properties (USGA 공법으로 조성된 그린의 토앙물리성과 Bentgrass의 생육)

  • Kweon Dong-Young;Lee Jeong-Ho;Lee Dong-lk;Joo Young-Kyoo
    • Asian Journal of Turfgrass Science
    • /
    • v.19 no.2
    • /
    • pp.95-102
    • /
    • 2005
  • USGA green specification is currently accepted in construction method of Korea. This study was carried out to find the factors influencing growth of turfgrass associated with soil physical properties of soil root-zone on golf green constructed with USGA method. Three putting greens in poor turfgrass and one in good turfgrass condition were selected for investigation on one golf course site at mid-South Korean peninsula. Soil hardness, moisture content, root length, and turf density were measured on-site greens, and soil physical properties and soil chemical properties also analyzed in laboratory. As a result of on-site surveys and soil physical tests in laboratory, soil physical properties were most important factors which influenced on turfgrass growth at tested greens. The results of soil particle analysis on green No. 2, in good turf condition, matched USGA sand particle recommendations. But those greens such as Nos. 1, 11 and 16, in poor putting greens, showed high soil compaction and improper soil particle distribution. Those factors created low leaf density, poor root depth, and higher moisture content compared with lower part of topsoil. Such phenomena caused inadequate turfgrass growth with soil hardening associated with poor drainage. Therefore, declines of soil physical properties associated with improper particle distribution caused a major factor influencing on turfgrass growth in golf green. Adequate test of soil particle analysis by USGA specification and proper construction method followed by adequate turf maintenance should be performed to obtain optimal turf quality on putting green.

Quantitive Evaluation of Reproducibility of Embankment for Full Scale Test through Statistical Analysis of Physical Properties of Soil (지반물성치 통계분석을 통한 실규모 시험용 제방축조의 재현성에 관한 정량적 평가)

  • Lee, Heemin;Moon, Junho;Kim, Minjin;Kim, Younguk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.6
    • /
    • pp.19-23
    • /
    • 2022
  • For the substantiation and verification of studies related to the construction of a levee using riverbed soil, real-scale levee construction and experimental studies are essential. One of the most important factors in the experimental study is the reproducibility of the multiple levees with the same initial conditions. Quantitative analysis of the reproducibility should be presented. In this study, a number of physical properties (specific gravity test, sieving test, liquid-plastic limit test, compaction test, on-site Density test) for multiple embankments built with fine-grained bed soil was obtained. The collected data then used to obtain the possibility of reproducing levee through statistical analysis to suggest a process of indicating a numeric initial condition of the real-scale test. As a result of statistical analysis to verify the aforementioned process, it was confirmed that it was possible to quantitatively evaluate the reproducibility of the construction under the same conditions of embankments. This is expected to be a basic data for a full-scale embankment test using riverbed soil including other soil based real-scale tests.

Fatigue Life Evaluation of Spot Weldments of SPC Sheet Including Strain Rate Effect (변형률속도효과를 고려한 일반냉연강판 점용접부의 피로수명평가)

  • Song, Joon-Hyuk;Nah, Seok-Chan;Yu, Hyo-Sun;Kang, Hee-Yong;Yang, Sung-Mo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.48-53
    • /
    • 2006
  • A methodology is described for predicting the fatigue life of the resistance spot weldment including strain rate effect. Because it is difficult to perform a physical failure test with high strain rate, an analytical method is necessary to get the mechanical properties of various strain rate, To this end, quasi-static tensile-shear tests at several strain rate were performed on spot weldments of SPC. These test provided the empirical data with the strain rate. With these results, we formulated the function of fatigue life prediction using the lethargy coefficient which is the global material property from tensile test. And, we predicted the fatigue life of spot weldment at dynamic strain rate. To confirm this method for fatigue life prediction, analytical results were compared with the experimental fatigue data.

Physical Properties and Cytotoxicity of Dental Pit and Fissure Sealants Containing Cerium Oxide Nano Particles(CNPs) (세륨옥사이드나노입자(Cerium Oxide Nano Particles; CNPs)를 첨가한 치면열구전색재의 물리적 특성 및 세포독성)

  • Jeong, Mi-Ae;Kim, Dong-Ae
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.3
    • /
    • pp.586-592
    • /
    • 2022
  • In this study cerium nano particles(CNPs) with 0-4.0 wt% was incorporated to the conventional dental pit and fissure sealant(ConciseTM) to produce new pit and fissure sealant the physical properties and cytotoxicity. The physical properties were measured for polymerizing depth the degree of water absorption and solubility. The cytotoxicity of cell viability was analyzed by MTT assay using immortalized human oral keratinocyte(IHOK). As a result of this preceding study the polymerizing depth was decreased by the increasing of the amount of CNPs. The solubility degree of the sealant added CNPs with 2.0 wt% showed was the lower and the water absorption showed no significantly difference with the control groups(p>0.05). The cytotoxicity test results showed high survival rates in all experimental groups. Therefore, pit and fissure sealant by the addition of CNPs excellent cell viability be produced without weaken the physical property of the cell viability fissure sealant containing CNPs does not weaken physical properties and has no cytotoxic effects biocompatibility. Considering its properties effect of CNPs, further studies are required for distribution technology application.

Mechanical Property Enhancement of Water Soluble Polymer Pouch for Ground Reinforcement (지반함몰 긴급복구용 수용성 폴리머 파우치의 기계적 물성강화)

  • Jung, Dongho;Chung, Dasom;You, Seung-Kyong;Kim, Joo-Hyun;Han, Jung-Geun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.221-230
    • /
    • 2017
  • We developed a polymer pouch using PVP that is water soluble in the precedent study. Yet melt viscosity was so low that it was not possible to produce hemispheric type which is essential for mass production, therefore we used another material to make the polymer pouch. It enabled to figure out a water-soluble transition and mechanic physical property of PEG that is newly chosen, and to blend the PEG with LLDPE and TALC followed by result. So, we could implement an evaluating property on blended proportion. It is important to find out a proper blending ratio throughout an experiment since its property is different or varied followed by each proportion as a water soluble character is conflict to a solid character. With the blending technique we were able to produce the polymer pouch enhanced for a tensile force and an impact intensity maintaining a water soluble character. We could identify a ground solidity effect of the polymer pouch as a result of a direct shear test using the product developed.

A Study on the Performance of Friction Materials using Reduced Iron (환원분철을 이용한 마찰재의 성능에 관한 연구)

  • Kim, Byoung-Sam;Mun, Sang-Don;Chi, Chang-Heon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.3
    • /
    • pp.593-598
    • /
    • 2008
  • It was made a friction material of various kinds by adding 10%, 20% and 30% of reduced iron. It was obtained by a connected-reduced process in a blast furnace sludge and oxidized iron, instead of $BaSO_4$, which is already a used inorganic filling material among a component of a brake friction material. This was done by a basic physical property test, a friction performance test to use a brake dynamometer. Moreover, in case of an add in the friction material, instead of using $BaSO_4$, the more expensive filling material, the reduced iron was also better because it has an excellent a friction property of an exothermic temperature, wear, etc. was 10%. At G1 and G3 specimens, a shear strength and a bonding strength of the friction material was decreased to be able to increase an amount of the blast furnace sludge and the reduced iron, but an application of all friction materials appeared enough strength.

A Study on Compaction Characteristics of Surplus Soils in Mountainous Areas in Busan, GyungNam Province (부산 경남지역 산지 현장 발생토의 다짐특성 연구)

  • Jung-Uk Kang;Gi-Ju Noh;Tae-Hyung Kim;In-Gon Joo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.2
    • /
    • pp.63-70
    • /
    • 2023
  • Most of the industrial complexes and housing complexes in Busan and Gyeongnam were constructed by developing mountainous areas, except for some landfill areas. During the development process, the surplus soil for site development was mainly used as the embankment material. In the field, however, even if the material of the material changes during the embankment work for site development, for convenience reasons such as construction period and site conditions, the material property test and compaction test are not additionally conducted for the embankment material, and quality control is conducted. In this study, physical property tests and compaction tests were conducted on surplus soils in mountainous areas in Busan, GyungNam Province and then regression analysis was performed on the data. In addition, a comparative analysis was conducted along with existing studies in Korea. The surplus soils at the sites in Busan and Gyeongnam were mainly weathered soils of granites, and were classified into clayey sand (SC) and silty sand (SM). As a result of regression analysis of the compaction characteristics according to the content of coarse and fine soils, the correlation between them was very high. Using the relational formula as a result of this study, it will be very useful for compaction management of the surplus soils in the field.

Change in Physical Properties of Engine oil Contaminated with Diesel (경유 혼입에 의한 엔진오일 물성 변화)

  • Lim, Young-Kwan;Lee, Jong-Eun;Na, Yong-Gyu;Kim, Jong-Ryeol;Ha, Jong-Han
    • Tribology and Lubricants
    • /
    • v.33 no.2
    • /
    • pp.45-51
    • /
    • 2017
  • Engine oil is a substance used for the lubrication of internal combustion systems. However, in some case, defects in engine systems may contaminate engine oil with fuel. Contaminated engine oil can cause problems in the normal functioning of a vehicle. In this study, we investigate the functional properties of engine oil contaminated with diesel fuel. The test results indicate that the engine oil contaminated with diesel fuel has low flash point, pour point, density, kinematic viscosity and cold cranking simulator value. The contaminated engine oil which has low plash point can cause fire and explosion accident. Furthermore, a four ball test indicates that the contaminated engine oil increases wear scar to poor lubricity. Moreover, we investigate the GC pattern using SIMDIST (simulated distillation) for determination of diesel in engine oil. The SIMDIST analytic result, diesel was detected at earlier retention time than engine oil in chromatogram. Thus the SIMDIST method can define whether engine oil is contaminated by diesel fuel or not. We can use the SIMDIST method for the diagnosis of oil condition instead of analyzing other physical properties that require many analytic instruments, large volume of oil sample and long analysis time.

Residents' use and awareness for green open space in the deprived area - focusing on the old downtown area of Jeonju-si - (쇠퇴지역 거주민의 공원녹지 환경 이용과 의식 - 전주시 구도심 지역을 중심으로 -)

  • Gu, Na-Eun;Lee, Yeun-Sook
    • KIEAE Journal
    • /
    • v.12 no.1
    • /
    • pp.45-53
    • /
    • 2012
  • Our society confronts a new social demand to protect the environmental equity of the people, and the green open space that is a representative public property which takes a very important role for the residents in less privileged urbane area in terms of providing amenity without requiring individual expenses additionally. This study aims to identify the current status and problems based on the environmental experiences of the actual residents, excluding the simple physical status, in relation with supplying public property of green open space, and the study put focus on the old downtown area of Jeonju-si which is a test-bed of urbane regeneration planned by the government. Residents in less privileged area evaluate the importance of green environment of park very highly as a factor to enhance their quality of life, but as they do not have well-established environmental infrastructure to back up their needs practically, they face difficulties to use such environment and show low level of satisfaction. In particular, as such characteristics appear remarkably among the least privileged urbane people in the less privileged urbane area, their dependence and expectation upon the environment of green open space is very apparent and, therefore, it is urgently needed to improve their environment for public green park area for the less privileged urbane people.

Accelerated Life Prediction of CPB(cold-pad-batch) Padder Roll Rubber to Chemical Degradation (CPB(Cold-Pad-Batch) 염색 패더롤 고무에서 화학적 노화로 인한 가속 수명예측)

  • Lim, Jee Young;Nam, Chang Woo;Lee, Woosung
    • Textile Coloration and Finishing
    • /
    • v.29 no.3
    • /
    • pp.155-161
    • /
    • 2017
  • In CPB(Cold-Pad-Batch) dyeing, the rubber of the padder roll is influenced by the heat, chemical and mechanical influences and thus aging of the padder roll rubber occurs. This study presents an accelerated thermal aging test of the CPB padder roll rubber with strong alkali conditions. Using Arrhenius formula of the various property values for the various aging temperatures($80^{\circ}C$, $90^{\circ}C$, $100^{\circ}C$) of the padder roll, the accelerated life predictions could be calculated. The threshold value of the property was set at different values. The hardness was set at the point where 5% degradation occurs based on the actual use conditions, and the tensile strength was set at the point where 50% degradation occurs based on the general life prediction standards. From the results of the different physical properties at differing temperatures, the Arrhenius plot could be obtained. Through the usage of the Arrhenius Equation, significant duration expectation could be predicted, and the chemical aging behavior of the CPB padder roll could be found at the arbitrary and actual temperatures.