DOI QR코드

DOI QR Code

Mechanical Property Enhancement of Water Soluble Polymer Pouch for Ground Reinforcement

지반함몰 긴급복구용 수용성 폴리머 파우치의 기계적 물성강화

  • Jung, Dongho (Department of Civil Engineering, Chung-ang Univ.) ;
  • Chung, Dasom (Department of Civil Engineering, Chung-ang Univ.) ;
  • You, Seung-Kyong (School of Engineering & Information Science, Civil Engineering, Myongji College) ;
  • Kim, Joo-Hyun (School of Chemical Engineering & Materials Science, Chung-ang Univ.) ;
  • Han, Jung-Geun (School of Civil and Environmental Engineering, Urban Design and Study, Chung-Ang Univ.)
  • Received : 2017.12.18
  • Accepted : 2017.12.27
  • Published : 2017.12.30

Abstract

We developed a polymer pouch using PVP that is water soluble in the precedent study. Yet melt viscosity was so low that it was not possible to produce hemispheric type which is essential for mass production, therefore we used another material to make the polymer pouch. It enabled to figure out a water-soluble transition and mechanic physical property of PEG that is newly chosen, and to blend the PEG with LLDPE and TALC followed by result. So, we could implement an evaluating property on blended proportion. It is important to find out a proper blending ratio throughout an experiment since its property is different or varied followed by each proportion as a water soluble character is conflict to a solid character. With the blending technique we were able to produce the polymer pouch enhanced for a tensile force and an impact intensity maintaining a water soluble character. We could identify a ground solidity effect of the polymer pouch as a result of a direct shear test using the product developed.

선행 연구에서 PVP를 이용하여 수용성 폴리머 파우치를 개발하였다. 그러나 개발된 재료의 용융점이 매우 낮아 재료의 성형 시 문제점이 많아 대량생산 시 필요한 성형, 제작이 불가능하였기에 성형성이 우수한 새로운 재료 조합을 이용하여 폴리머 파우치를 개발하였다. 새롭게 선정된 PEG의 수용성 변화 및 지반공동 내 보강 시 파우치의 기계적 물성을 만족해야한다. 따라서 PEG와 LLDPE, TALC 블렌딩 비율에 따른 특성평가를 실시하였는데 각 원료의 비율에 따라 발생하는 성질이 다르기 때문에 실험을 통해 적정 비율을 찾는 것이 중요하기 때문이다. 이러한 블렌딩을 통해 수용성 특성은 유지하며 인장 및 충격강도가 증진된 폴리머 파우치를 개발하였다. 최종 개발된 제품을 이용하여 직접전단 실험을 실시한 결과, 폴리머 파우치의 지반강도 효과를 확인할 수 있었다.

Keywords

References

  1. Kim, Y. H., Kim, J. B., Kim, D. W., and Han, J. G. (2017), "Experimental Study on Generating mechanism of The Ground Subsidence of Due to Damaged Waters supply Pipe", Journal of Korean Geosynthetics Society, Vol.16, No.2, pp.139-148. (In Korean)
  2. Lee, K. C., Kim, D. W., and Park, J. J. (2017), "Study on Management System of Ground Sinking Based on Underground Cavity Grade", Journal of Korean Geosynthetics Society, Vol.16, No.2, pp.23-33. (In Korean)
  3. Yu, N. J., Han, J. G., and Lee, K. I. (2017), "Fundamental study on the development of Filling materials for Trenchless Emergency Restoration of Ground cavity", Journal of Korean Geosynthetics Society, Vol.16, No.2, pp.97-107. (In Korean)
  4. Jung, D. H., Kim, K. H., Kim, J. H., and Han, J. G. (2017), "A Fundamental Study on the Application of Water Souuble Pouch for Ground Reinforcement", Journal of Korean Geosynthetics Society, Vol.16, No.2, pp.121-129. (In Korean)
  5. Han, Y. S., Lee, J. H., Kang, H. N., Baeg, S. I., and Chun, B. S. (2011), "Strength Development Mechanism of Inorganic Injection Material", Journal of Korean Geo-Environmental Society, Vol.12, No.10, pp.5-12. (In Korean)
  6. Hong, G. G., Park, J. J., Kim, D. W., and Kim, K. S. (2017), "Development of Material Injection System for Rapid Reinforcement of Small Scale Cavity", 2017 Fall Geosynthetics Conference, October 26, 2017, pp.115-116. (In Korean)
  7. KS M ISO 179-1 (2012), Plastics-Determination of Charpy impact properties-Part 1 : Non-instrumented impact test, Korean Standards and Certifications.
  8. KS M ISO 527-1 (2012), Plastics-Determination of tensile properties, Korean Standards and Certifications.
  9. Jiang, W., Ye, Z., Gou, S., Liu, X., Liang, L., Wang, W., and Song, Z. (2016), "Modular $\beta$-cyclodextrin and polyoxyethylene ether modified water-soluble polyacrylamide for shale hydration inhibition", Journal of Polymers Advanced Technologies, Vol.27, No.2, pp.213-220. https://doi.org/10.1002/pat.3623
  10. Saba, N., Paridah, M. T., and Jawaid, M. (2015), "Mechanical properties of kenaf fibre reinforced polymer composite: A review", Journal of Construction and Building Materials, Vol.76, pp.87-96. https://doi.org/10.1016/j.conbuildmat.2014.11.043
  11. Savagatrup, S., Makaram, A. S., Burke, D. J., and Lipomi, D. J. (2014), "Mechanical Properties of Conjugated Polymers and Polymer-Fullerene Composites as a Function of Molecular Structure", Journal of Advanced Functional Materials, Vol.24, No.8, pp.1169-1181. https://doi.org/10.1002/adfm.201302646
  12. Araujo, T. M., Sinha-Ray, S., Pegoretti, A., & Yarin, A. L. (2013), "Electrospinning of a blend of a liquid crystalline polymer with poly(ethylene oxide): Vectran nanofiber mats and their mechanical properties", Journal of Materials Chemistry C, Vol.1, pp.351-358. https://doi.org/10.1039/C2TC00048B
  13. Qureshi, F. S., Amin, M. B., Maadhah, A. G., and Hamid, S. H. (1990), "Weather induced degradation of linear low density polyethylene (LLDPE): mechanical properties", Journal of Polymer Engineering, Vol.9, No.1, pp.67-84.
  14. Croce, F., Persi, L., Scrosati, B., Serraino-Fiory, F., Plichta, E., and Hendrickson, M. A. (2001), "Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes", Electrochimica Acta, Vol.46, No.16, pp.2457-2461. https://doi.org/10.1016/S0013-4686(01)00458-3
  15. Zhang, M., Li, X. H., Gong, Y. D., Zhao, N. M., and Zhang, X. F. (2002), "Properties and biocompatibility of chitosan films modified by blending with PEG", Biomaterials, Vol.23, No.13, pp.2641-2648. https://doi.org/10.1016/S0142-9612(01)00403-3
  16. Raj, R. G., Kokta, B. V., and Daneault, C. (1990), "A comparative study on the effect of aging on mechanical properties of LLDPE-glass fiber, mica, and wood fiber composite", Journal of Applied Polymer Science, Vol.40, No.5, pp.645-655. https://doi.org/10.1002/app.1990.070400502
  17. Raghavan, P., Zhao, X., Kim, J. K., Manuel, J., Chauhan, G. S., Ahn, J. H., and Nah, C. (2008), "Ionic conductivity and electrochemical properties of nanocomposite polymer electrolytes based on electrospun poly (vinylidene fluoride-co-hexafluoropropylene) with nano-sized ceramic fillers", Electrochimica Acta, Vol.54, No.2, pp.228-234. https://doi.org/10.1016/j.electacta.2008.08.007
  18. Chan, E. S., Wong, S. L., Lee, P. P., Lee, J. S., Ti, T. B., Zhang, Z., Poncelet, D., Ravindra, P., Phan S. H., and Yim, Z. H. (2011), "Effects of starch filler on the physical properties of lyophilized calcium-alginate beads and the viability of encapsulated cells", Carbohydrate Polymers, Vol.83, No.1, pp.225-232. https://doi.org/10.1016/j.carbpol.2010.07.044
  19. Dileep Kumar, C. J., Sunny, E. K., Raghu, N., Venkataramani, N., and Kulkarni, A. R. (2008), "Synthesis and Characterization of Crystallizable Anorthite?Based Glass for a Low-Temperature Cofired Ceramic Application", Journal of the American Ceramic Society, Vol.91, No.2, pp.652-655. https://doi.org/10.1111/j.1551-2916.2007.02160.x
  20. Lee, S. Y., Kang, I. A., Doh, G. H., Yoon, H. G., Park, B. D., and Wu, Q. (2008), "Thermal and mechanical properties of wood flour/talc-filled polylactic acid composites: Effect of filler content and coupling treatment", Journal of Thermoplastic Composite Materials, Vol.21, pp.209-223. https://doi.org/10.1177/0892705708089473

Cited by

  1. 실내실험 및 현장실험을 통한 고밀도 폴리 우레탄 공법의 물리·역학적 특성 분석 vol.31, pp.1, 2021, https://doi.org/10.9720/kseg.2021.1.083