• Title/Summary/Keyword: Physical mechanism

Search Result 1,336, Processing Time 0.027 seconds

Consideration on $H_2S$ Sensing Mechanism of CuO-$SnO_2$ Thick Film through the Analysis of the Temperature-Electrical Resistance Characteristics (온도-전기저항 특성 해석을 통한 CuO-$SnO_2$ 후막 소자의 $H_2S$ 감지기구 고찰)

  • 유도준;준타마키;박수잔;노보류야마조에
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.4
    • /
    • pp.379-384
    • /
    • 1996
  • The H2S sensing mechanism of CuO-SnO2 was confirmed by analyzing the electrical-resistance variation with temperature under an H2S atmosphere. While the resistance of CuO-SnO2 thick film at N2+H2S atmosphere was almost invariant with change in temperature it increased with increasing temperature for air +H2S atmos-phere. This behavior was analyzed using an equation derived from a basic assumption based on the H2S sensing mechanism proposed before. the experimental results are sufficiently explained with the equation derived which showed that the H2S sensing mechanism was reasonable. The equation also gave a detailed analysis and physical meaning to the behavior of the resistance variation with change in H2S concentration.

  • PDF

Development of Automatic Bundle Machine for Vegetables(I) : Mechanism Design (채소 자동결속기의 개발(I) : 메커니즘 설계)

  • Kim, Yong-Seok;Park, Te-Pyo;Kim, Jea-Jun;Park, Sung-Ho;Yang, Soon-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.2
    • /
    • pp.207-213
    • /
    • 2009
  • The bundling process is the final step in vegetable manufacturing, however, the process is a little difficult to be automatized, because vegetable has the physical properties of roughness, softness, and fragility etc. In this paper, we proposed an automatic bundling mechanism for vegetable based on the heat melt sticking. The proposed mechanism consists of three modules, one module is the moving part for aligning of the vegetable shape and adjusting of the vegetable tension, second module is the arm driving part for the vegetable binding and the band roll releasing, and third module is band joining, band cutting, and band feeding part for the vegetable binding continuously. Through this research, Using the SMO(SimDesigner Motion) module, we optimize condition of mechanical movement of the bundling mechanism. This bundling system designed in order to binding 288 bundle/hour.

A Numerical Study on the Source Mechanism of the Pressure Fluctuation Induced by Propeller Cavitation

  • Seol, Han-Shin;Moon, Il-Sung
    • Journal of Ship and Ocean Technology
    • /
    • v.12 no.2
    • /
    • pp.32-40
    • /
    • 2008
  • This paper deals with the pressure fluctuation induced by propeller cavitation. The main objective of this study is to analyze the source mechanism of the pressure fluctuation induced by propeller cavitation. To analyze the source mechanism of the pressure fluctuation, modem acoustic theory is applied. The governing equation of the pressure fluctuation induced by propeller is derived using Ffowcs Williams-Hawkings proposed time domain acoustic method. The physical mechanism of pressure fluctuation at the blade rate frequency is analyzed using numerically generated cavitation volume variation. Finally the characteristics of the pressure fluctuation induced by a propeller are presented.

Fibers Flocculation and Physical Properties Changes of Paper Depending on Cationic Polymer Addition (양이온성 고분자 첨가에 따른 섬유의 응집 및 종이 물성 변화)

  • Yoon, Doo-Hoon;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.1 s.109
    • /
    • pp.10-16
    • /
    • 2005
  • Flocculation of fibers and its distribution in paper are related to flocculation mechanisms, retention and drainage. Relationship between flocculation mechanisms and physical properties of paper has not been fully studied. In this study, flocculation of fibers was investigated by changing cationic polymers for flocculation mechanism analysis. Flocculation of stock and physical strength of paper were similar when using branched PAM and linear PAM with fillers and microparticles Flocculation and physical strength were also similar when using branched PAM and linear PAM and microparticles without fillers. In that case excessive flocculation was not produced, so formation was improved but physical strength was decreased. When using branched PAM instead of linear PAM with filler addition, drainage time was decreased, air permeability was improved, and physical strength was increased.

Fundamental Study on the Chemical Ignition Delay Time of Diesel Surrogate Components (모사 디젤 화학반응 메커니즘의 각 성분이 화학적 점화 지연 시간에 미치는 영향에 관한 기초 연구)

  • Kim, Gyujin;Lee, Sangyul;Min, Kyoungdoug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.74-81
    • /
    • 2013
  • Due to its accuracy and efficiency, reduced kinetic mechanism of diesel surrogate is widely used as fuel model when applying 3-D diesel engine simulation. But for the well-developed prediction of diesel surrogate reduced kinetic mechanism, it is important to know some meaningful factors which affect to ignition delay time. Meanwhile, ignition delay time consists of two parts. One is the chemical ignition delay time related with the chemical reaction, and the other is the physical ignition delay time which is affected by physical behavior of the fuel droplet. Especially for chemical ignition delay time, chemical properties of each fuel were studied for a long time, but researches on their mixtures have not been done widely. So it is necessary to understand the chemical characteristics of their mixtures for more precise and detailed modeling of surrogate diesel oil. And it shows same ignition trend of paraffin mixture with those of single component, and shorter ignition delay at low/high initial temperature when mixing paraffin and toluene.

Z-Clutching: Interaction Technique for Navigating 3D Virtual Environment Using a Generic Haptic Device

  • Song, Deok-Jae;Kim, Seokyeol;Park, Jinah
    • Journal of Computing Science and Engineering
    • /
    • v.10 no.1
    • /
    • pp.32-38
    • /
    • 2016
  • Navigating a large 3D virtual environment using a generic haptic device can be challenging since the haptic device is usually bounded by its own physical workspace. On the other hand, mouse interaction easily handles the situation with a clutching mechanism-simply lifting the mouse and repositioning its location in the physical space. Since the haptic device is used for both input and output at the same time, in many cases, its freedom needs to be limited in order to accommodate such a situation. In this paper, we propose a new mechanism called Z-Clutching for 3D navigation of a virtual environment by using only the haptic device without any interruption or sacrifice in the given degrees of freedom of the device's handle. We define the clutching state which is set by pulling the haptic handle back into space. It acts similarly to lifting the mouse off the desk. In this way, the user naturally feels the haptic feedback based on the depth (z-direction), while manipulating the haptic device and moving the view as desired. We conducted a user study to evaluate the proposed interaction technique, and the results are promising in terms of the usefulness of the proposed mechanism.

A Study on the Formation Mechanism of the Fly Ash from Coal Particles in the Coal Burning Boiler (석탄연소 보일러에서 생성된 석탄회의 분석과 형성 메커니즘 해석에 대한 연구)

  • Lee, Jung Eun;Lee, Jae Keun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.12
    • /
    • pp.1691-1701
    • /
    • 1998
  • Fly ash produced in coal combustion is a fine-grained material consisting mostly of spherical, glassy, and porous particles. A study on the formation mechanism of the fly ash from coal particles in the pulverized coal power plant is investigated with a physical, morphological, and chemical characteristic analysis of fly ash collected from the Samchonpo power plant. This study may contribute to the data base of domestic fly ash, the improvement of combustion efficiency, fouling phenomena and ash collection in the electrostatic precipitator. The physical property of fly ash is determined using a particle counter for the measurement of ash size distribution. Morphological characteristic of fly ash is performed using a scanning electron micrograph. The chemical components of fly ash are determined using an inductively coupled plasma emission spectrometry(ICP). The distribution of fly ash size was bi-modal and ranged from 12 to $19{\mu}m$ in mass median diameter. Exposure conditions of flue gas temperature and duration within the combustion zone of the boiler played an important role on the morphological properties of the fly ash such as shape, particle size and chemical components. The evolution of ash formation during pulverized coal combustion has revealed three major mechanisms by large particle formation due to break-up process, gas to particle conversion and growth by coagulation and agglomeration.

The mechanism of action of pulsed radiofrequency in reducing pain: a narrative review

  • Park, Donghwi;Chang, Min Cheol
    • Journal of Yeungnam Medical Science
    • /
    • v.39 no.3
    • /
    • pp.200-205
    • /
    • 2022
  • Pain from nervous or musculoskeletal disorders is one of the most common complaints in clinical practice. Corticosteroids have a high pain-reducing effect, and their injection is generally used to control various types of pain. However, they have various adverse effects including flushing, hyperglycemia, allergic reactions, menstrual changes, immunosuppression, and adrenal suppression. Pulsed radiofrequency (PRF) is known to have a pain-reducing effect similar to that of corticosteroid injection, with nearly no major side effects. Therefore, it has been widely used to treat various types of pain, such as neuropathic, joint, discogenic, and muscle pain. In the current review, we outlined the pain-reducing mechanisms of PRF by reviewing previous studies. When PRF was first introduced, it was supposed to reduce pain by long-term depression of pain signaling from the peripheral nerve to the central nervous system. In addition, deactivation of microglia at the level of the spinal dorsal horn, reduction of proinflammatory cytokines, increased endogenous opioid precursor messenger ribonucleic acid, enhancement of noradrenergic and serotonergic descending pain inhibitory pathways, suppression of excitation of C-afferent fibers, and microscopic damage of nociceptive C- and A-delta fibers have been found to contribute to pain reduction after PRF application. However, the pain-reducing mechanism of PRF has not been clearly and definitely elucidated. Further studies are warranted to clarify the pain-reducing mechanism of PRF.

A Study on The Filtration Characteristics of Magnetic Fibrous Polymeric Filter with Packing Density Profile as a New Oil Filter (윤활시스템용 오일필터로서 충전밀도 변화에 따른 자성폴리머 필터의 여과특성 연구)

  • 최기영;안병길;최웅수;권숙인;권오관
    • Tribology and Lubricants
    • /
    • v.11 no.2
    • /
    • pp.8-14
    • /
    • 1995
  • The filtration of the magnetic fibrous polymeric filter with packing density profile made of a self-bonded, nonwoven structure comprising a thermoplastic polymer and a magnetic substance was investigated using an oil filter tester, a particle quantifier and an image analyzer system. The magnetic fibrous polymeric filter showed excellent filtration efficiency compared with conventional paper filter. From the experimental results, It is deduced that the filtration mechanism of conventional paper filter is only the function of physical porosity by surface filteration. On the other hand, the newly magnetic fibrous polymeric filter is designed with a new concept in filtration mechanism. That is, it has a dual function of depth and magnetic filters by physical porosity and magnetic attraction. The newly magnetic fibrous polymeric filter has been shown to be a highly effective oil filter for lubrication systems.

Towards Robust Key Extraction from Multipath Wireless Channels

  • Shehadeh, Youssef El Hajj;Alfandi, Omar;Hogrefe, Dieter
    • Journal of Communications and Networks
    • /
    • v.14 no.4
    • /
    • pp.385-395
    • /
    • 2012
  • This paper tackles the problem of generating shared secret keys based on the physical characteristics of the wireless channel. We propose intelligent quantization mechanisms for key generation, achieving high secret bits generation rate. Moreover, some practical issues affecting the performance of the key generation mechanism are deeply investigated. Mainly, we investigate the effects of delay and mobility on the performance and we enhance the key generation mechanism accordingly. As a result, this paper presents a framework towards robust key generation from multipath wireless channels.