
Introduction 

Most people experience pain due to pathologies of the nervous or 
musculoskeletal systems [1,2]. When the degree of pain is severe, 
patients’ quality of life decreases, and their function in daily activi-
ties and work deteriorates [1,2]. Therefore, pain control is import-
ant in clinical practice. Corticosteroid injections are frequently 
used [3,4]. However, they can have adverse effects including flush-
ing, hyperglycemia, allergic reactions, menstrual changes, immu-
nosuppression, and adrenal suppression [5,6]. To date, many injec-
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tion materials have been suggested as substitutes for corticoste-
roids [7-9]. However, the effectiveness of materials that substitute 
corticosteroids is generally inferior to that of corticosteroids. 

Electrical stimulation is thought to have a pain-reducing effect, 
and several types of electrical simulations have been used to allevi-
ate pain [10-12]. Of these various stimulations, radiofrequency 
was found to have a pain-reducing effect similar to corticosteroid 
injection [13-15]. Continuous radiofrequency (CRF) exposes the 
target nerves or tissues to high temperatures (70°C–90°C) via con-
tinuous electrical stimulation [16]. Nerves or tissues treated with 
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CRF are ablated [16]. The ablation of targeted nociceptive nerve 
fibers is thought to be the main mechanism of pain reduction after 
CRF [16]. However, as experiences of CRF use were accumulated, 
physicians realized that the pain could be effectively controlled 
even not under such high temperatures [17-19]. Therefore, it was 
thought that the formation and action of the electrical field around 
the target nerves or tissues would be a more important mechanism 
of PRF action than ablation by high temperatures. In 1998, Sluijter 
et al. [20] first introduced pulsed radiofrequency (PRF). By plac-
ing a long resting phase between brief electrical stimulation, PRF 
does not produce sufficient heat to cause structural damage [20]. 
Therefore, major complications rarely occur after PRF. Since its in-
troduction, PRF has been widely used for various types of pain, 
such as neuropathic, joint, discogenic, and muscular pain [21-24] 
(Fig. 1). 

To date, several clinical studies have demonstrated its positive 
analgesic effect [21-24]. In addition, many researchers have at-
tempted to identify the mechanisms of action of PRF in alleviating 
pain. Although the exact mechanisms have not been elucidated, 
several possible mechanisms have been suggested. 

This review aimed to outline the pain-reducing mechanisms of 
PRF by reviewing previous studies on this topic. 

Basic theory of action of pulsed 
radiofrequency 

CRF supplies high-frequency continuous current to the targeted 
nerves [16]. The tip of the probe during the CRF procedure is at 
approximately 80°C and induces coagulative necrosis to target 
nerve structures around the probe tip [16]. Because the high tem-
perature of a targeted structure decreases rapidly with distance 

from the electrode tip, lesions caused by the CRF procedure are 
well-circumscribed [16]. Therefore, other than damage to the tar-
geted area, other tissues are rarely affected. Electrical neurolysis us-
ing CRF can inhibit the transfer of pain signals and has been prov-
en to have a pain-reducing effect in various musculoskeletal disor-
ders [25,26]. However, neurolysis can result in various side effects, 
such as sensory deficits, neuropathic pain, and skin burns [27,28]. 

In contrast, PRF uses a radiofrequency current comprising alter-
natively repeated electrical stimulation with a short duration (e.g., 
20 ms) and resting phase (e.g., 480 ms) [17-20] (Fig. 2). This al-
lows time for heat elimination and maintains the temperature of 
the target tissue below 42°C. Temperatures below 42°C rarely in-
duce nerve tissue damage [17-24]. Therefore, adverse effects that 
can develop after the C-reactive protein procedure do not occur af-
ter the PRF procedure. PRF stimulation produces selective long-
term depression (LTD) in C-fiber–mediated spinal sensitization 
[29,30]. LTD reduces the efficacy of neuronal synapses in C-fi-
bers, and consequently, inhibits pain signaling from the peripheral 
nerve to the central nervous system [29,30]. LTD after PRF stimu-
lation was supposed to be the main pain-reducing mechanism by 
Sluijter et al. [20], who invented the PRF procedure. Subsequently, 
several animal studies have been conducted to determine the 
pain-reducing mechanism of PRF, and these studies demonstrated 
that several mechanisms other than LTD are associated with pain 
reduction after the application of PRF (Table 1). 

Fig. 1. The application of pulsed radiofrequency procedure on the 
lumbar dorsal root ganglion.

Fig. 2. The waveforms of continuous RF (CRF) and pulsed RF (PRF). 
While CRF is applied continuously without any resting phase, PRF 
has a long resting phase between brief electrical stimulation. RF, 
radiofrequency; Voltage, the amplitude of pulsed RF current.
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Pain-reducing mechanism of pulsed 
radiofrequency 

1. Changes at the molecular level 

1) Decrease of microglial activity 
Microglia in the dorsal horn of the spinal cord play an important 
role in the induction and maintenance of neuroinflammation, re-
sulting in chronic neuropathic pain [31,32]. Activated microglia re-
lease various inflammatory cytokines and chemokines that facili-
tate nociceptive processing at all levels of the neuraxis, including 
the spinal cord and supraspinal centers. Some previous animal 
studies have demonstrated the downregulation of microglia in rats 
with neuropathic pain after the application of PRF [31,32]. In 
2013, Cho et al. [31] applied PRF stimulation (voltage, 45 V; pulse 
rate, 2 Hz; duration, 2 minutes) to the single dorsal root ganglion 
(DRG) in 23 Sprague-Dawley rats with sciatica due to herniated 
discs. After PRF application, mechanical withdrawal thresholds 
significantly increased, which persisted for 40 days. At 41 days after 
PRF application, microglia in the spinal dorsal horn were found to 
be deactivated. In 2016, Cho et al. [32] applied caudal epidural 
PRF (pulse rate, 5 Hz; pulse width, 5 ms; duration, 10 minutes) to 
35 Sprague-Dawley rats with sciatica due to herniated discs. At 14 
days post-PRF, in the sections of the spinal cord from L3, L4, L5, 
L6, and S1, microglial activation was attenuated in rats with herni-
ated discs. The deactivation of microglia in the spinal dorsal horn 
after PRF application seems to prevent the progression from acute 
pain to chronic pain. 

2) Reduction of proinflammatory cytokines 
Inflammation is associated with acute and chronic neuropathic 
pain. An increase in proinflammatory cytokines, such as various 
types of interleukin (IL) and tumor necrosis factor-alpha 
(TNF-α), has been observed in the DRG and spinal dorsal horn in 
animal models of neuropathic pain [33,34]. In 2013, Vallejo et al. 

[35] evaluated the effect of PRF (voltage, 45 V; pulse width, 20 
ms; duration, 3 minutes) on the ipsilateral L5 DRG in six rats ex-
hibiting sciatic nerve injury. Following PRF therapy, increased 
proinflammatory gene expression, such as IL-6 and TNF-α, ob-
served in the sciatic nerve and DRG of rats, returned to baseline 
values. Along with the decreased activation of proinflammatory 
gene expression, mechanical allodynia in the hind paw was alleviat-
ed. In 2019, Jiang et al. [36] applied PRF (pulse width, 20 ms; 
pulse rate, 2 Hz; duration, 2 minutes) on the ipsilateral L5 DRG or 
sciatic nerve in 20 rats with chronic constriction injury to the sciat-
ic nerve. Mechanical allodynia and thermal hyperalgesia were re-
lieved by PRF application. In addition, the authors found that IL-
1β and TNF-α in the peripheral blood were downregulated. This 
anti-inflammatory effect of PRF appears to result in a reduction of 
various types of neuromuscular pain. 

3) Increase in the levels of endogenous opioid precursor mes-
senger RNA and the corresponding opioid peptide 
In 2012, Moffett et al. [37] investigated the molecular changes af-
ter applying PRF using cultured human dermal fibroblasts and hu-
man epidermal keratinocytes. After the application of PRF, the lev-
els of endogenous opioid precursor messenger RNA (mRNA; 
proenkephalin, proopiomelanocortin, and prodynorphin) and 
corresponding opioid peptides were increased. 

This finding suggests that PRF exerts an analgesic effect by in-
creasing endogenous opioid precursor mRNA levels. 

2. Changes in neuronal activity 

1) Activation of pain-inhibitory mechanism 
Previous animal studies have demonstrated that the noradrenergic 
descending inhibitory pathway plays an important role in analgesic 
action [38]. In addition, activation of serotonin receptors, such as 
5-HT1, 5-HT2, and 5-HT3, induces analgesic effects [39,40]. In 
2009, Hagiwara et al. [41] performed an animal study in rats to 
evaluate the mechanism of PRF action. They induced unilateral 
hind paw hyperalgesia by injecting 0.15 mL of Freund’s complete 
adjuvant and applied PRF at 37°C or 42°C for 3 minutes on the 
sciatic nerves. The pain-reducing effect of PRF was significantly in-
hibited by intrathecal injection of the alpha2-adrenoceptor antago-
nist (yohimbine), the selective 5-HT3 serotonin receptor antago-
nist (MDL72222), and the nonselective serotonin receptor antag-
onist (methysergide). Based on their results, they suggested that 
the pain-reducing effect of PRF is correlated with the enhance-
ment of the noradrenergic and serotonergic descending pain inhib-
itory pathways. 

Table 1. The suggested pain-reducing mechanism of pulsed 
radiofrequency

Long-term depression of pain signaling
Changes at the molecular level
  Deactivation of microglia at the level of the spinal dorsal horn
  Reduction of proinflammatory cytokines
  Increment of endogenous opioid precursor messenger ribonucleic acid
Changes in neuronal activity
  Enhancement of noradrenergic and serotonergic descending pain in-

hibitory pathway
  Suppression of excitation of C-afferent fibers
Microscopic damage of nociceptive C- and A-delta fibers
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2) Inhibition of the excitatory nociceptive C-fibers 
In 2017, Huang et al. [29] conducted experiments in rats with neu-
ropathic pain induced by left L5 spinal nerve ligation. After PRF 
stimulation (pulse rate, 2 Hz; pulse width, 25 ms; duration, 5 min-
utes) on the left L5 DRG, the excitation of A- and C-afferent fibers 
was measured by checking the A- and C-components on the 
evoked field potential recordings. They found that PRF significant-
ly suppressed the C-component overtime after 30 minutes, and 
this suppression was sustained for at least 140 minutes after PRF. 
However, the A component was not significantly suppressed after 
PRF stimulation. Mechanical allodynia and thermal analgesia sig-
nificantly reduced after 10 and 14 days, respectively. This result in-
dicates that PRF reduces neuropathic pain by inhibiting or sup-
pressing the excitation of nociceptive C-fibers. 

3. Anatomical changes 

1) Microscopic damage of the nociceptive nerve 
PRF is known to control pain without causing damage to the tar-
geted tissue because the temperature of the targeted tissue does 
not exceed 42°C during PRF stimulation, and the threshold of tis-
sue destruction is known to range from 45°C to 50°C. However, 
Erdine et al. [42] reported tissue destruction after PRF stimula-
tion. In 2009, Erdine et al. [42] conducted PRF stimulation (volt-
age, 45 V; pulse rate, 2 Hz; pulse width, 1 ms) of the sciatic nerve of 
rats. The temperature was not allowed to exceed 42°C. The au-
thors evaluated microscopic alterations in the nerve tissue using 
electron microscopy. After the application of PRF, the destruc-
tion of membranes, mitochondria, microfilaments, and microtu-
bules was observed in the C-fibers, A-delta, and A-beta fibers. C- 
and A-delta fibers are nociceptive nerve fibers. The damage to 
these fibers was attributed to pain reduction after PRF stimula-
tion. 

Conclusion 

In this review, we discuss previous studies on the mechanism of 
pain reduction using PRF. LTD of pain signaling from the periph-
eral nerves to the central nervous system, deactivation of microglia, 
reduction of proinflammatory cytokines, an increase in the endog-
enous opioid precursor mRNA, enhancement of descending pain 
inhibitory pathway, and inhibition and injury of nociceptive nerve 
fibers were suggested to contribute to pain reduction after PRF. 
However, the pain-reducing mechanism of PRF has not been 
clearly and definitely elucidated. Further studies are warranted to 
clarify the pain-reducing mechanism of PRF. 
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