• Title/Summary/Keyword: Physical field modeling

Search Result 154, Processing Time 0.024 seconds

Study on the Applicability of High Frequency Seismic Reflection Method to the Inspection of Tunnel Lining Structures - Physical Modeling Approach - (터널 지보구조 진단을 위한 고주파수 탄성파 반사법의 응용성 연구 - 모형 실험을 중심으로 -)

  • Kim, Jung-Yul;Kim, Yoo-Sung;Shin, Yong-Suk;Hyun, Hye-Ja;Jung, Hyun-Key
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.3
    • /
    • pp.37-45
    • /
    • 2000
  • In recent years two reflection methods, i.e. GPR and seismic Impact-Echo, are usually performed to obtain the information about tunnel lining structures composed of concrete lining, shotcrete, water barrier, and voids at the back of lining. However, they do not lead to a desirable resolution sufficient for the inspection of tunnel safety, due to many problems of interest including primarily (1) inner thin layers of lining structure itself in comparison with the wavelength of source wavelets, (2) dominant unwanted surface wave arrivals, (3) inadequate measuring strategy. In this sense, seismic physical modeling is a useful tool, with the use of the full information about the known physical model, to handle such problems, especially to study problems of wave propagation in such fine structures that are not amenable to theory and field works as well. Thus, this paper deals with various results of seismic physical modeling to enable to show a possibility of detecting the inner layer boundaries of tunnel lining structures. To this end, a physical model analogous to a lining structure was built up, measured and processed in the same way as performed in regular reflection surveys. The evaluated seismic section gives a clear picture of the lining structure, that will open up more consistent direction of research into the development of an efficient measuring and processing technology.

  • PDF

A Study on the Timbre of Pyeon-gyoung (국악 타악기 편경의 음색연구)

  • Yoon, Ji-Won;Kim, Jun
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.11
    • /
    • pp.1728-1738
    • /
    • 2010
  • Pyeon-gyeong, similar to Chinese Bianqing, is a Korean traditional lithophone with multiple stone chimes. Due to the temperature- and humidity-insensitive characteristics of its material, pumice stone, the instrument provides highly stable pitch and therefore has played a key role in Korean traditional court music. By reason of having absolute pitch, it is an important part of the research on the standard pitch and scale system of korean traditional music, but as an instrument, the study on the sound characteristics and worth is not making satisfactory progress, to date. This research is an analysis paper for physical modeling synthesis of pyeongyeong. Through this study, we will determine the original characteristics of the timbre of pyeongyeong as a unique korean traditional percussion, and investigate these characteristics objectively, based on the music acoustics by scientific analysis. Furthermore, this study will be used as an important basic material for physical modeling synthesis of pyeongyeong, and also make a huge contribution to the cultural applicability by the vitalization of graft onto the various artistic creation field, through the comprehension of the timbre of pyeongyeong as an instrument.

Enhancement of Physical Modeling System for Underwater Moving Object Detection (이동하는 수중 물체 탐지를 위한 축소모형실험 시스템 개선)

  • Kim, Yesol;Lee, Hyosun;Cho, Sung-Ho;Jung, Hyun-Key
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.2
    • /
    • pp.72-79
    • /
    • 2019
  • Underwater object detection method adopting electrical resistivity technique was proposed recently, and the need of advanced data processing algorithm development counteracting various marine environmental conditions was required. In this paper, we present an improved water tank experiment system and its operation results, which can provide efficient test and verification. The main features of the system are as follows: 1) All the processes enabling real time process for not only simultaneous gathering of object images but also the electrical field measurement and visualization are carried out at 5 Hz refresh rates. 2) Data acquisition and processing for two detection lines are performed in real time to distinguish the moving direction of a target object. 3) Playback and retest functions for the saved data are equipped. 4) Through the monitoring screen, the movement of the target object and the measurement status of two detection lines can be intuitively identified. We confirmed that the enhanced physical modeling system works properly and facilitates efficient experiments.

Future Development Direction of Water Quality Modeling Technology to Support National Water Environment Management Policy (국가 물환경관리정책 지원을 위한 수질모델링 기술의 발전방향)

  • Chung, Sewoong;Kim, Sungjin;Park, Hyungseok;Seo, Dongil
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.621-635
    • /
    • 2020
  • Water quality models are scientific tools that simulate and interpret the relationship between physical, chemical and biological reactions to external pollutant loads in water systems. They are actively used as a key technology in environmental water management. With recent advances in computational power, water quality modeling technology has evolved into a coupled three-dimensional modeling of hydrodynamics, water quality, and ecological inputs. However, there is uncertainty in the simulated results due to the increasing model complexity, knowledge gaps in simulating complex aquatic ecosystem, and the distrust of stakeholders due to nontransparent modeling processes. These issues have become difficult obstacles for the practical use of water quality models in the water management decision process. The objectives of this paper were to review the theoretical background, needs, and development status of water quality modeling technology. Additionally, we present the potential future directions of water quality modeling technology as a scientific tool for national environmental water management. The main development directions can be summarized as follows: quantification of parameter sensitivities and model uncertainty, acquisition and use of high frequency and high resolution data based on IoT sensor technology, conjunctive use of mechanistic models and data-driven models, and securing transparency in the water quality modeling process. These advances in the field of water quality modeling warrant joint research with modeling experts, statisticians, and ecologists, combined with active communication between policy makers and stakeholders.

Synergies between Digital Models and Physical Models in Convergence Design - Case Studies using Projects of Architectural Firms and Educational Environments - (건축설계에서 융합설계를 위한 디지털 모델과 물리 모델의 역할과 상호보완성 - 건축설계 회사와 교육환경의 사례를 중심으로 -)

  • Kim, Do-Young
    • Journal of KIBIM
    • /
    • v.9 no.2
    • /
    • pp.29-44
    • /
    • 2019
  • This paper is to explore examples of complementary use of digital and physical models. The reason for this is to suggest a method for commercializing architectural design considering high technology. These cases are the practical and educational environment in which design processes based on digital computation technology are performed. Also, in this environment, analog design media (eg, physical models) still being used in the design process using digital computing. Indeed, in this environment, designers are exploiting digital and physical models to address the types of risks that can be discovered when designs are implemented and these risks. By analyzing these cases, we define the roles of digital and physical models to visualize and resolve risks. This paper focuses on one of method as "prototyping", which is used in the field of machinery and is a difficult method to carry out in the conventional design process. In particular, designers look for benefits that encourage designers in utilizing current digital computation technologies (eg, parametric design, simulation, building information models, and digital fabrication). Among the roles of the physical model, roles that can not be replaced by the digital model are explored. It is clear that this case-based study has difficulty in generalizing the design method. However, it helps the designers of today's practical and educational environment to verify and design the actual details of construction and operation when applying and developing unfamiliar materials and methods in the field of architecture.

Prediction of Draft Force of Moldboard Plow according to Travel Speed in Cohesive Soil using Discrete Element Method (이산요소법을 활용한 점성토 환경에서의 작업 속도에 따른 몰드보드 플라우 견인력 예측)

  • Bo Min Bae;Dae Wi Jung;Dong Hyung Ryu;Jang Hyeon An;Se O Choi;Yeon Soo Kim;Yong Joo Kim
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.71-79
    • /
    • 2023
  • In the field of agricultural machinery, various on-field tests are conducted to measure design load for optimal design of agricultural equipment. However, field test procedures are costly and time-consuming, and there are many constraints on field soil conditions due to weather, so research on utilizing simulation to overcome these shortcomings is needed. Therefore, this study aimed to model agricultural soils using discrete element method (DEM) software. To simulate draft force, predictions are made according to travel speed and compared to field test results to validate the prediction accuracy. The measured soil properties are used for DEM modeling. In this study, the soil property measurement procedure was designed to measure the physical and mechanical properties. DEM soil model calibration was performed using a virtual vane shear test instead of the repose angle test. The DEM simulation results showed that the prediction accuracy of the draft force was within 4.8% (2.16~6.71%) when compared to the draft force measured by the field test. In addition, it was confirmed that the result was up to 72.51% more accurate than those obtained through theoretical methods for predicting draft force. This study provides useful information for the DEM soil modeling process that considers the working speed from the perspective of agricultural machinery research and it is expected to be utilized in agricultural machinery design research.

Modeling of memory-dependent derivative in a rotating magneto-thermoelastic diffusive medium with variable thermal conductivity

  • Said, Samia M.;Abd-Elaziz, Elsayed M.;Othman, Mohamed I.A.
    • Steel and Composite Structures
    • /
    • v.36 no.6
    • /
    • pp.617-629
    • /
    • 2020
  • The purpose of this paper is to depict the effect of rotation and initial stress on a magneto-thermoelastic medium with diffusion. The problem discussed within memory-dependent derivative in the context of the three-phase-lag model (3PHL), Green-Naghdi theory of type III (G-N III) and Lord and Shulman theory (L-S). Analytical expressions of the considered variables are obtained by using Laplace-Fourier transforms technique. Numerical results for the field quantities given in the physical domain and illustrated graphically in the absence and presence of a magnetic field, initial stress as well as the rotation. The differences in variable thermal conductivity are also presented at different parameter of thermal conductivity. The numerical results of the field variables are presented graphically to discuss the effect of various parameters of interest. Some special cases are also deduced from the present investigation.

A Study On the Effects of Velocity Staur Velocity Saturation on the Mosfet Devices (CARRIER속도 포화가 MOSFET소자특성에 미치는 영향에 관한 연구)

  • Park, Young-June
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.6
    • /
    • pp.424-429
    • /
    • 1987
  • It has been observed that the reduction rate of the inversion layer carrier mobility due to the increase of the longitudinal electric field(drain to source direction) decreases as the transverse electric field increases. The effects of this physicar phenomenon to the I-V characteristics of the short channel NMOSFET are studied. It is shown that these effects increase the drain Current in the saturatio region, which agrees with the genarally observed decrepancy between the experimental I-V charateristics and the I-V modeling which dose not include this physical phenomenon. Also it is shown that this effect becomes more important when the device channel length decreases and the device operates in the high electric field range.

  • PDF

On scale-dependent stability analysis of functionally graded magneto-electro-thermo-elastic cylindrical nanoshells

  • Asrari, Reza;Ebrahimi, Farzad;Kheirikhah, Mohammad Mahdi
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.659-674
    • /
    • 2020
  • The present paper employs nonlocal strain gradient theory (NSGT) to study buckling behavior of functionally graded magneto-electro-thermo-elastic (FG-METE) nanoshells under various physical fields. NSGT modeling of the nanoshell contains two size parameters, one related to nonlocal stress field and another related to strain gradients. It is considered that mechanical, thermal, electrical and magnetic loads are exerted to the nanoshell. Temperature field has uniform and linear variation in nanoshell thickness. According to a power-law function, piezo-magnetic, thermal and mechanical properties of the nanoshell are considered to be graded in thickness direction. Five coupled governing equations have been obtained by using Hamilton's principle and then solved implementing Galerkin's method. Influences of temperature field, electric voltage, magnetic potential, nonlocality, strain gradient parameter and FG material exponent on buckling loads of the FG-METE nanoshell have been studied in detail.

A strategy to enhance the efficiency of land seismic reflection method via controlling seismic energy radiation pattern. (지면 탄성파 반사법의 효율성 향상을 위한 탄성파 발생원 에너지 방사형 변조기법)

  • Kim, Jung-Yul;Kim, Yoo-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.807-814
    • /
    • 2004
  • Land seismic reflection survey has been increasingly demanded in various civil engineering works because of its own ability to delineate layers, water table, to detect cavities or fracture zones, to estimate seismic velocities of each layer. However, our shallow subsurface structures are very complex. The relatively thin layer(mostly soil) to the wavelength directly followed by a basic rock with high impedance used to generate complicated surface waves, kind of channel waves with high amplitude that is dominate in entire seismograms and hence the useful reflection events will be almost hopelessly immersed in the undesired surface waves. Thus, it would seem that the use of traditional seismic survey could not be likely to provide in itself a satisfactory information about our exploration targets. This paper hence introduces an efficient measuring strategy illustrating a properly controlled arrangement of the vertical single force sources commonly used, yielding a very sharply elongated form of P-energy with a minimum of S radiation energy, what we call, P-beam source. Abundant experiments of physical modeling showed that in that way the surface waves could be enormously reduced and the reflection events would be additive and thus reinforced. Examples of field data are also illustrated. The contribution of P-beam source will be great in civil engineering area as well as in general geological exploration area.

  • PDF