• Title/Summary/Keyword: Physical damage

Search Result 1,265, Processing Time 0.022 seconds

Development of a numerical modelling technique for evaluation of a long-term chemical deterioration of tunnel shotcrete lining (터널 숏크리트 라이닝의 장기 화학적 열화 손상 평가를 위한 수치 모델링 기법 개발)

  • Shin, Hyu-Soung;Kim, Dong-Gyou
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.3
    • /
    • pp.299-307
    • /
    • 2007
  • In this study, a new concept for simulating a physical damage of tunnel shotcrete lining due to a long-term chemical deterioration has been proposed. It is known that the damage takes place mainly by internal cracks, reduction of stiffness and strength, which results mainly from volume expansion of the lining and corrosion of cement materials, respectively. This damage mechanism of shotcrete lining appears similar in most kinds of chemical reactions in tunnels. Therefore, the mechanical deterioration mechanism induced by a series of chemical reactions was generalized in this study and mathematically formulated in the framework of thermodynamics. The numerical model was implemented to a 3D finite element code, which can be used to simulate behaviour of tunnel structures undergoing external loads as well as chemical deterioration in time. A number of illustrative examples were given to show a feasibility of the model in tunnel designs.

  • PDF

Definition of aggressive response scale through quantitative evaluation of cyber attack (사이버공격의 정량적 피해평가를 통한 공세적 대응규모 산정)

  • Hong, Byoungjin;Lim, Jaesung;Kim, Wanju;Cho, Jaemyoung
    • Convergence Security Journal
    • /
    • v.17 no.4
    • /
    • pp.17-29
    • /
    • 2017
  • Various cyber attacks against our society and the government are continuing, and cases and damages are reported from time to time. And the area of cyber attack is not limited to cyberspace, but it is expanding into physical domain and affecting it. In the military arena, we have established and implemented the principle of responding proportionally to enemy physical attacks. This proportionality principle is also required in the version where the region is expanding. In order to apply it, it is necessary to have a quantitative and qualitative countermeasure against cyber attack. However, due to the nature of cyber attacks, it is not easy to assess the damage accurately and it is difficult to respond to the proportionality principle and the proportional nature. In this study, we calculated the damage scale by quantitatively and qualitatively evaluating the cyber attack damage using the Gorden-Lobe model and the security scoring technique based on the scenario. It is expected that the calculated results will be provided as appropriate level and criterion to counteract cyber attack.

Investigation of Ge2Sb2Te5 Etching Damage by Halogen Plasmas (할로겐 플라즈마에 의한 Ge2Sb2Te5 식각 데미지 연구)

  • Jang, Yun Chang;Yoo, Chan Young;Ryu, Sangwon;Kwon, Ji Won;Kim, Gon Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.35-39
    • /
    • 2019
  • Effect of Ge2Sb2Te5 (GST) chalcogen composition on plasma induced damage was investigated by using Ar ions and F radicals. Experiments were carried out with three different modes; the physical etching, the chemical etching, and the ion-enhanced chemical etching mode. For the physical etching by Ar ions, the sputtering yield was obtained according to ion bombarding energy and there was no change in GST composition ratio. In the plasma mode, the lowest etch rate was measured at the same applied power and there was also no plasma induced damage. In the ion-enhanced chemical etching conditions irradiated with high energy ions and F halogen radicals, the GST composition ratio was changed according to the density of F radicals, resulting in higher roughness of the etched surface. The change of GST composition ratio in halogen plasma is caused by the volatility difference of GST-halogen compounds with high energy ions over than the activation energy of surface reactions.

Deterioration Diagnosis and Evaluation of Physical Properties in the Dinosaur Footprint Fossils in Cheongsong Sinseongri, Korea, for the Conservation Plans (보존방안 수립을 위한 청송 신성리 공룡발자국 화석지의 손상도 진단 및 물성평가)

  • Yang, Hye Ri;Lee, Chan Hee;Park, Jun Hyoung
    • Economic and Environmental Geology
    • /
    • v.54 no.3
    • /
    • pp.311-330
    • /
    • 2021
  • The Sinseongri site contains at least eleven theropod trackways, three sauropod trackways, and one or more ornithopod walkways of dinosaur footprints. The host rock at the site is primarily siltstone and mudstone, but thermal alterations have metamorphosed it into hornfels. Except for micro cracks and exfoliations, joint systems in various directions appeared on the surface of the fossils site and showed a low share of all damage factors. The host rocks in the fossils site demonstrated relatively high physical properties as a result of ultrasonic velocity and were classified as stable. More than half of the fossils required reinforcement to control the progression of cracks if the type of conservation treatment was subdivided according to the damage type of dinosaur footprint fossils. The white paint used to visualize the footprints seems to deteriorate, allowing rock debris to spill out and causing damage to the fossil site, and alternative visualization schemes should be considered.

Effects of branched-chain amino acid supplement on knee peak torque and indicators of muscle damage following isokinetic exercise-induced delayed onset muscle soreness

  • Lim, In-Soo
    • Korean Journal of Exercise Nutrition
    • /
    • v.24 no.4
    • /
    • pp.28-33
    • /
    • 2020
  • [Purpose] This study aimed to investigate the effects of branched-chain amino acid (BCAA) supplement on delayed onset muscle soreness (DOMS) by analyzing the maximum muscle strength and indicators of muscle damage. [Methods] Twelve men with majors in physical education were assigned to the BCAA group and placebo group in a double-blinded design, and repeated measurements were conducted. DOMS was induced with an isokinetic exercise. Following BCAA administration, the changes in the knee extension peak torque, flexion peak torque, aspartate aminotransferase (AST), creatine kinase (CK), and lactate dehydrogenase (LDH) concentrations were analyzed. The maximum knee muscle strength was measured at the baseline (pre-D0) following BCAA administration for 5 days before exercise (-D5, -4D, -3D, -2D, -1D). In contrast, the post-treatment measurements (D3) were recorded after BCAA administration for 3 days (post-D0, D1, D2). Blood samples were obtained before (pre-D0), immediately after (post-D0), 24 h (D1), 48 h (D2), and 72 h (D3) after the exercise to analyze the indicators of muscle strength. BCAA was administered twice daily for 8 days (5 days and 3 days before inducing DOMS and during the experimental period, respectively). [Results] There was no difference in the flexion peak torque between the groups. However, the BCAA group showed a significantly higher extension peak torque at D3 (second isokinetic exercise), compared to the placebo group (p<.05). There was no difference in AST changes between the groups. Nonetheless, the CK and LDH were significantly reduced in the BCAA group, compared to the placebo group. There was no correlation between the extension peak torque and flexion peak torque. However, the CK and LDH increased proportionately in DOMS. Moreover, their concentrations significantly increased with a decreasing peak torque (p<.01). [Conclusion] An exercise-induced DOMS results in a decrease in the peak torque and a proportional increase in the CK and LDH concentrations. Moreover, the administration of BCAA inhibits the reduction of the extension peak torque and elevation of CK and LDH concentrations. Therefore, BCAA might be administered as a supplement to maintain the muscle strength and prevent muscle damage during vigorous exercises that may induce DOMS in sports settings.

Analysing the Economic Effects of Flood Damage by Dynamic CGE Model (동태CGE모형을 이용한 홍수피해의 경제파급효과 분석)

  • Jeong, Kiho;Whang, Sungyoon
    • Environmental and Resource Economics Review
    • /
    • v.23 no.4
    • /
    • pp.689-718
    • /
    • 2014
  • This study analyzes the ripple effects on the national economy of the flood damage using a perfect foresight dynamic CGE model for 2010 as the base year in case that the flood damage reduces the capital of the relevant industrial sectors. The analysis is limited to the items of physical damage such as agricultural land, ships and public facilities, for which statistical data can be obtained. As flood damage scenarios we adopt the minimum, maximum and average value of flood damage's historical data over the period 1991~2010 for each item. The results show that the largest production decline happens to the industry of fishing and transport and the next largest to the agricultural and forestry industry. The GDP reduction in the base year turns out to be from 0.001 to 0.057 percent compared to the benchmark and 11 percent compared to the exogenous shock to capital stock. Dynamically, the GDP gradually decreases until the year of 2030, which shows the long-lasting impact on the national economy of flood damage via the chanel of the capital damage.

Incompatible deformation and damage evolution of mixed strata specimens containing a circular hole

  • Yang, Shuo;Li, Yuanhai;Chen, Miao;Liu, Jinshan
    • Geomechanics and Engineering
    • /
    • v.20 no.5
    • /
    • pp.461-474
    • /
    • 2020
  • Analysing the incompatible deformation and damage evolution around the tunnels in mixed strata is significant for evaluating the tunnel stability, as well as the interaction between the support system and the surrounding rock mass. To investigate this issue, confined compression tests were conducted on upper-soft and lower-hard strata specimens containing a circular hole using a rock testing system, the physical mechanical properties were then investigated. Then, the incompatible deformation and failure modes of the specimens were analysed based on the digital speckle correlation method (DSCM) and Acoustic Emission (AE) data. Finally, numerical simulations were conducted to explore the damage evolution of the mixed strata. The results indicate that at low inclination angles, the deformation and v-shaped notches inside the hole are controlled by the structure plane. Progressive spalling failure occurs at the sidewalls along the structure plane in soft rock. But the transmission of the loading force between the soft rock and hard rock are different in local. At high inclination angles, v-shaped notches are approximately perpendicular to the structure plane, and the soft and hard rock bear common loads. Incompatible deformation between the soft rock and hard rock controls the failure process. At inclination angles of 0°, 30° and 90°, incompatible deformations are closely related to rock damage. At 60°, incompatible deformations and rock damage are discordant due that the soft rock and hard rock alternately bears the major loads during the failure process. The failure trend and modes of the numerical results agree very well with those observed in the experimental results. As the inclination angles increase, the proportion of the shear or tensile damage exhibits a nonlinear increase or decrease, suggesting that the inclination angle of mixed strata may promote shear damage and restrain tensile damage.

Explosive loading of multi storey RC buildings: Dynamic response and progressive collapse

  • Weerheijm, J.;Mediavilla, J.;van Doormaal, J.C.A.M.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.2
    • /
    • pp.193-212
    • /
    • 2009
  • The resilience of a city confronted with a terrorist bomb attack is the background of the paper. The resilience strongly depends on vital infrastructure and the physical protection of people. The protection buildings provide in case of an external explosion is one of the important elements in safety assessment. Besides the aspect of protection, buildings facilitate and enable many functions, e.g., offices, data storage, -handling and -transfer, energy supply, banks, shopping malls etc. When a building is damaged, the loss of functions is directly related to the location, amount of damage and the damage level. At TNO Defence, Security and Safety methods are developed to quantify the resilience of city infrastructure systems (Weerheijm et al. 2007b). In this framework, the dynamic response, damage levels and residual bearing capacity of multi-storey RC buildings is studied. The current paper addresses the aspects of dynamic response and progressive collapse, as well as the proposed method to relate the structural damage to a volume-damage parameter, which can be linked to the loss of functionality. After a general introduction to the research programme and progressive collapse, the study of the dynamic response and damage due to blast loading for a single RC element is described. Shock tube experiments on plates are used as a reference to study the possibilities of engineering methods and an explicit finite element code to quantify the response and residual bearing capacity. Next the dynamic response and progressive collapse of a multi storey RC building is studied numerically, using a number of models. Conclusions are drawn on the ability to predict initial blast damage and progressive collapse. Finally the link between the structural damage of a building and its loss of functionality is described, which is essential input for the envisaged method to quantify the resilience of city infrastructure.

A novel method for generation and prediction of crack propagation in gravity dams

  • Zhang, Kefan;Lu, Fangyun;Peng, Yong;Li, Xiangyu
    • Structural Engineering and Mechanics
    • /
    • v.81 no.6
    • /
    • pp.665-675
    • /
    • 2022
  • The safety problems of giant hydraulic structures such as dams caused by terrorist attacks, earthquakes, and wars often have an important impact on a country's economy and people's livelihood. For the national defense department, timely and effective assessment of damage to or impending damage to dams and other structures is an important issue related to the safety of people's lives and property. In the field of damage assessment and vulnerability analysis, it is usually necessary to give the damage assessment results within a few minutes to determine the physical damage (crack length, crater size, etc.) and functional damage (decreased power generation capacity, dam stability descent, etc.), so that other defense and security departments can take corresponding measures to control potential other hazards. Although traditional numerical calculation methods can accurately calculate the crack length and crater size under certain combat conditions, it usually takes a long time and is not suitable for rapid damage assessment. In order to solve similar problems, this article combines simulation calculation methods with machine learning technology interdisciplinary. First, the common concrete gravity dam shape was selected as the simulation calculation object, and XFEM (Extended Finite Element Method) was used to simulate and calculate 19 cracks with different initial positions. Then, an LSTM (Long-Short Term Memory) machine learning model was established. 15 crack paths were selected as the training set and others were set for test. At last, the LSTM model was trained by the training set, and the prediction results on the crack path were compared with the test set. The results show that this method can be used to predict the crack propagation path rapidly and accurately. In general, this article explores the application of machine learning related technologies in the field of mechanics. It has broad application prospects in the fields of damage assessment and vulnerability analysis.

Utilization of Immersion-Drying Method for Measuring Damage Depth of Fire-Damaged High-Strength Concrete (화재로 손상된 고강도 콘크리트의 손상 깊이 측정을 위한 수중침지 건조방법의 활용)

  • Kim, Jong;Lim Gun-Su;Beak, Seung-Bok;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.3
    • /
    • pp.297-308
    • /
    • 2024
  • This study presents a novel approach for evaluating fire-induced damage depth in concrete. The methodology leverages the principle that exposure to high temperatures causes internal expansion within concrete, leading to increased voids and microcracks in the damaged zones. This heightened porosity results in greater absorption rates compared to undamaged areas. By immersing fire-damaged concrete samples in water and subsequently monitoring the drying process, the depth of damage can be assessed. Differences in drying rates and color variations between damaged and undamaged areas serve as visual indicators for determining the extent of the damage. Experimental results from this water immersion method revealed damage depths of 38.7mm and 37.5mm for two different concrete mixtures. These measurements notably surpass the damage depths estimated using traditional phenolphthalein-based methods. This discrepancy suggests that utilizing the absorption rate principle, which is directly linked to the physical changes caused by thermal expansion, offers a more accurate and sensitive assessment of fire damage depth compared to methods relying solely on the presence of Portlandite for colorimetric indication.