• Title/Summary/Keyword: Physical Parameter

Search Result 869, Processing Time 0.029 seconds

Estimation of saturated hydraulic conductivity of Korean weathered granite soils using a regression analysis

  • Yoon, Seok;Lee, Seung-Rae;Kim, Yun-Tae;Go, Gyu-Hyun
    • Geomechanics and Engineering
    • /
    • v.9 no.1
    • /
    • pp.101-113
    • /
    • 2015
  • Saturated soil hydraulic conductivity is a very important soil parameter in numerous practical engineering applications, especially rainfall infiltration and slope stability problems. This parameter is difficult to measure since it is very highly sensitive to various soil conditions. There have been many analytical and empirical formulas to predict saturated soil hydraulic conductivity based on experimental data. However, there have been few studies to investigate in-situ hydraulic conductivity of weathered granite soils, which constitute the majority of soil slopes in Korea. This paper introduces an estimation method to derive saturated hydraulic conductivity of Korean weathered granite soils using in-situ experimental data which were obtained from a variety of slope areas of South Korea. A robust regression analysis was performed using different physical soil properties and an empirical solution with an $R^2$ value of 0.9193 was suggested. Besides that this research validated the proposed model by conducting in-situ saturated soil hydraulic conductivity tests in two slope areas.

Flow and Heat Transfer Analysis of Copper-water Nanofluid with Temperature Dependent Viscosity Past a Riga Plate

  • Ahmad, A.;Ahmed, S.;Abbasi, F.M.
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.181-187
    • /
    • 2017
  • Flow of electrically conducting nanofluids is of pivotal importance in countless industrial and medical appliances. Fluctuations in thermophysical properties of such fluids due to variations in temperature have not received due attention in the available literature. Present investigation aims to fill this void by analyzing the flow of copper-water nanofluid with temperature dependent viscosity past a Riga plate. Strong wall suction and viscous dissipation have also been taken into account. Numerical solutions for the resulting nonlinear system have been obtained. Results are presented in the graphical and tabular format in order to facilitate the physical analysis. An estimated expression for skin friction coefficient and Nusselt number are obtained by performing linear regression on numerical data for embedded parameters. Results indicate that the temperature dependent viscosity alters the velocity as well as the temperature of the nanofluid and is of considerable importance in the processes where high accuracy is desired. Addition of copper nanoparticles makes the momentum boundary layer thinner whereas viscosity parameter does not affect the boundary layer thickness. Moreover, the regression expressions indicate that magnitude of rate of change in effective skin friction coefficient and Nusselt number with respect to nanoparticles volume fraction is prominent when compared with the rate of change with variable viscosity parameter and modified Hartmann number.

Analysis of electron swarm parameter in CH$_4$ gas (CH$_4$가스중에서의 전자군 파라미터의 해석)

  • 문기석;서상현;송병두;하성철;유회영;김상남
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.167-172
    • /
    • 1997
  • The electron swarm parameters and Energy distribution function have been calculated for electrons motion through CH$_4$ pure gas under the action of uniform electric field for 0.1$\leq$E/N(Td)$\leq$300, at the 300( $^{\circ}$K), using MCS method and Boltzmann transport equation. And then the resulting values of electron drift velocity were compared to experimental data and adjustment made in assumed cross sections until good agreement was obtained. The electron drift velocity is very useful in the fields of study relating to the conductive and dielectric phenomena of gas medium. The electron energy distribution in gas discharge are generally nonmaxwellian , and must be calculated by a numerical solution of the Boltzmann equation which takes in the elastic and inelastic collisions. To analyze the physical phenomena and properties (or electron swarm motion in a gas under the influence of an electric field, the energy distribution function of electrons and the theoretical deriveration of the electron drift velocity are calculated by the Backward Prolongation with respect to the Boltzmann transport equation as a parameter of E/N(Td).

  • PDF

Inference on the Joint Center of Rotation by Covariance Pattern Models

  • Kim, Jinuk
    • Korean Journal of Applied Biomechanics
    • /
    • v.28 no.2
    • /
    • pp.127-134
    • /
    • 2018
  • Objective: In a statistical linear model estimating the center of rotation of a human hip joint, which is the parameter related to the mean of response vectors, assumptions of homoscedasticity and independence of position vectors measured repeatedly over time in the model result in an inefficient parameter. We, therefore, should take into account the variance-covariance structure of longitudinal responses. The purpose of this study was to estimate the efficient center of rotation vector of the hip joint by using covariance pattern models. Method: The covariance pattern models are used to model various kinds of covariance matrices of error vectors to take into account longitudinal data. The data acquired from functional motions to estimate hip joint center were applied to the models. Results: The results showed that the data were better fitted using various covariance pattern models than the general linear model assuming homoscedasticity and independence. Conclusion: The estimated joint centers of the covariance pattern models showed slight differences from those of the general linear model. The estimated standard errors of the joint center for covariance pattern models showed a large difference with those of the general linear model.

High Pressure Synthesis and Physical Properties of the Solid Solution, $SrLaAl_{1-x}Ni_xO_4(0

  • 변송호
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.11
    • /
    • pp.1084-1088
    • /
    • 1995
  • A complete solid solution (SrLaAl1-xNixO4) between insulating SrLaAlO4 and metallic SrLaNi(Ⅲ)O4 oxides were prepared under high oxygen pressure (1.5 kbar, 800 ℃). They have tetragonal K2NiF4-type structure in all the solid solution range. Compared with lattice parameters of the same solid solution prepared under normal condition (1 bar, 1200 ℃), large decrease in the c-parameter was induced by high pressure treatment while no noticeable variation of the a-parameter was observed. Although marked changes of structural parameters, magnetic susceptibilities, and electron paramagnetic resonance spectra were consistently occurred before and after x=0.5, overall behaviors were essentially the same with those of solid solution prepared under normal condition. Such a phenomenon is explained by assuming the formation of partially filled narrow σ*x2-y2 band for x>0.5. Lattice contraction along the c-axis by high pressure treatment seems not to broaden this band. Particularly, the continuous absorption characteristic of a high free carrier concentration for x>0.5 and the absence of Ni-O in-plane stretching mode in the infrared absorption spectra supports this picture. However, the conductivities increasing with temperature for all solid solution suggest that some localization character, of probably Anderson type, remains for x>0.5.

Coil-to-globule transition of thermo-responsive γ-substituted poly (ɛ-caprolactone) in water: A molecular dynamics simulation study

  • Koochaki, Amin;Moghbeli, Mohammad Reza;Nikkhah, Sousa Javan
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1313-1319
    • /
    • 2018
  • The coil-to-globule behavior of poly{${\gamma}$-2-[2-(2methoxyethoxy)ethoxy]ethoxy-3-caprolactone} (PMEEECL) as a ${\gamma}$-substituted poly (${\varepsilon}$-caprolactone) was investigated via atomistic molecular dynamics (MD) simulation. For this purpose, radius of gyration, end-to-end distance and radial distribution function of the chain in the presence of water were calculated. Consequently, the lower critical solution temperature (LCST) of PMEEECL chain at which the coil-to-globule transition takes place, was determined in each calculated parameter curve. The simulation results indicated that the LCST of PMEEECL was occurred at close to 320 K, which is in a good agreement with previous experimental results. Additionally, the appearance of sudden change in both Flory-Huggins interaction parameter (${\chi}$) and interaction energy between the PMEEECL chain and water molecules at about 320 K confirmed the calculated LCST result. The radial distribution function (RDF) results showed that the affinity of the PMEEECL side chain to water molecules is lower than its backbone.

Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory

  • Rouabhia, Abdelkrim;Chikh, Abdelbaki;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Heireche, Houari;Tounsi, Abdeldjebbar;Kouider Halim, Benrahou;Tounsi, Abdelouahed;Al-Zahrani, Mesfer Mohammad
    • Steel and Composite Structures
    • /
    • v.37 no.6
    • /
    • pp.695-709
    • /
    • 2020
  • The buckling properties of a single-layered graphene sheet (SLGS) are examined using nonlocal integral first shear deformation theory (FSDT) by incorporating the influence of visco-Pasternak's medium. This model contains only four variables, which is even less than the conventional FSDT. The visco-Pasternak's medium is introduced by considering the damping influence to the conventional foundation model which modeled by the linear Winkler's coefficient and Pasternak's (shear) foundation coefficient. The nanoplate under consideration is subjected to compressive in- plane edge loads per unit length. The impacts of many parameters such as scale parameter, aspect ratio, the visco-Pasternak's coefficients, damping parameter, and mode numbers on the stability investigation of the SLGSs are examined in detail. The obtained results are compared with the corresponding available in the literature.

Derivation of Radiometric Calibration Coefficients for KOMPSAT-3A Mid-wave Infrared Data Using a Radiative Transfer Model: An Exploratory Example (복사전달모델을 이용한 KOMPSAT-3A 중적외선 데이터의 복사보정계수 산출: 탐구적 사례)

  • Kim, Yongseung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1629-1634
    • /
    • 2020
  • It is essential to convert the Digital Number (DN) measured from Earth observing satellites into the physical parameter of radiance when deriving the geophysical parameter such as surface temperature in the satellite data processing. The purpose of this study is to update the DN·Radiance equation established from lab measurements, using the KOMPSAT-3A mid-wave infrared data and the MODTRAN radiative transfer model. Results of this study show that the improved DN·Radiance equation allows us to produce the realistic values of radiance. We expect in the forthcoming study that the radiances calculated as such should be more quantitatively validated with the use of relevant in-situ measurements and a radiative transfer model.

Assessment of stress in virtual reality environment using power spectral density ratio and second derivative of photoplethysmography (광 혈류 신호의 주파수 파워 특성과 이차 미분값을 이용한 가상환경의 스트레스 평가)

  • Y.H. Nam;Kim, H.T.;H.D. Ko;Park, K.S.
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2001.11a
    • /
    • pp.169-172
    • /
    • 2001
  • There are many people who suffer from simulation sickness when immersing in virtual reality. In this study, we analyzed two photoplethysmogram(PPG) parameters - a second derivative parameter and power spectral density ratios - in order to relate PPG parameters with simulation sickness. 36 young, healthy subjects were participated in the experiment, and each subject was equipped with a PPG electrode during his or her immersion. Simulation sickness section was defined as a 7 - second section which starts from the point where a subject reported simulation sickness, and normal section as a same-length section where no physical stimuli was presented to him or her. We compared the PPG parameters of the simulation sickness sections with the normal sections, - d/a ratio is believed to have lower value during vasodilation and higher value during vasoconstriction, however, we could not find much difference in the parameter between normal and simulation sickness sections. We also compared 1 to 10Hz power spectral density ratios in normal sections with in simulation sickness section, and found that 6 density ratios among them have different value. Therefore, the density ratios might be utilized as parameters to detect simulation sickness of subjects.

  • PDF

Effects of Physical Parameters and Age on the Order of Entrance of Hynobius leechii to a Breeding Pond

  • Lee, Jung-Hyun;Park, Dae-Sik
    • Journal of Ecology and Environment
    • /
    • v.31 no.3
    • /
    • pp.183-191
    • /
    • 2008
  • To determine the age structure of a Hynobius leechii breeding population and analyze relationships between the order of entrance to breeding ponds and physical parameters and age, we studied a wild population of the species in the Research Forests of Kangwon National University in Chuncheon, Kangwon, South Korea from March 16 to April 13, 2005. The age of breeding males ranged one to nine years old and that of females ranged from three to nine years old. The asymptotic sizes of males and females were 6.36 and 6.51 cm, respectively, and the growth coefficients of males and females were 0.71 and 0.81, respectively. The snout-vent length (SVL), head length, and body mass of males were all positively correlated with their age, but female age did not show a significant relationship with any physical parameter. The tail depth, body mass, and condition factors (SVL/body mass $\times$ 100) of both males and females were negatively related with the order of entrance to the breeding pond. The head width and SVL of males were also negatively correlated with the order of entrance, but the SVL of females was positively related with the order of entrance. These results suggest that physical parameters are more important determinants of breeding migration patterns than age. We discuss which of two hypotheses, the mate opportunity hypothesis and the susceptibility hypothesis, is better able to explain the order of entrance to breeding ponds for male and female H. leechii.