• Title/Summary/Keyword: Physical Parameter

Search Result 869, Processing Time 0.024 seconds

Electron Beam Modification of Dual Phase Filler: Surface Characteristics and its Influence on the Properties of Styrene-Butadiene Rubber Vulcanizates

  • Shanmugharaj A. M.
    • Rubber Technology
    • /
    • v.5 no.2
    • /
    • pp.94-103
    • /
    • 2004
  • The present work describes modification of dual phase filler by electron beam irradiation in presence of multifunctional acrylates like trimethylol propane triacrylate (TMPTA) or silane coupling agent like bis (3-triethoxysilylpropyltetrasulphide) and in-fluence of the modified fillers on the physical properties of styrene-butadiene rubber (SBR) vulcanizates. Modulus at 300 % elongation increases whereas the tensile strength decreases with increase in radiation dose for the dual phase filler loaded styrene-butadiene rubber vulcanizates (SBR). However, modulus and tensile strength significantly increase, which is more, pronounced at higher filler loadings for TMPTA modified dual phase filler loaded SBR. These changes in properties are explained by the equilibrium swelling data and Kraus plot interpreting the polymer-filler interaction. Electron beam modification of the filler results in a reduction of tan ${\delta}$ at $70^{\circ}C$, a parameter for rolling resistance and increase in tan ${\delta}$ at $0^{\circ}C$, a parameter for wet skid resistance of the SBR vulcanizates. Finally, the influence of modified fillers on the properties like abrasion resistance, tear strength and fatigue failure and the improvement in the properties have been explained in terms of polymer-filler interaction.

  • PDF

Electromagnetic field and initial stress on a porothermoelastic medium

  • Abd-Elaziz, Elsayed M.
    • Structural Engineering and Mechanics
    • /
    • v.78 no.1
    • /
    • pp.1-13
    • /
    • 2021
  • In this study, the porothermoelastic problem with the effect of the magnetic field and initial stress was investigated. We applied normal mode analysis to solve the resulting non-dimensional coupled equations. Numerical results for the displacements, temperature distribution, pore pressure, stresses, induced electric field and induced magnetic field distributions are presented graphically and discussed. The medium deformed because of thermal shock and due to the application of the magnetic field, there result an induced magnetic and an induced electric field in the medium. Numerical analyses are given graphically on the square (2D) and cubic (3D) domains to illustrate the effects of the porosity parameter, magnetic field and initial stress parameter on the physical variables.

Fractional effect in an orthotropic magneto-thermoelastic rotating solid of type GN-II due to normal force

  • Lata, Parveen;Himanshi, Himanshi
    • Structural Engineering and Mechanics
    • /
    • v.81 no.4
    • /
    • pp.503-511
    • /
    • 2022
  • In this article, we have examined the effect of fractional order parameter in a two-dimensional orthotropic magneto-thermoelastic solid in generalized thermoelasticity without energy dissipation with fractional order heat transfer in the context of hall current, rotation and two-temperature due to normal force. Laplace and Fourier transform techniques are used to obtain the solution of the problem. The expressions for displacement components, stress components, current density components and conductive temperature are obtained in transformed domain and then in physical domain by using numerical inversion method. The effect of fractional parameter on all the components has been depicted through graphs. Some special cases are also discussed in the present investigation.

Influence of sputtering parameter on the properties of silver-doped zinc oxide sputtered films

  • S. H. Jeong;Lee, S. B.;J.H. Boo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.58-58
    • /
    • 2003
  • Silver doped ZnO (SZO) films were prepared by rf magnetron sputtering on glass substrates with extraordinary designed ZnO target. With the doping source for target, use AgNO$_3$ powder on a various rate (0, 2, and 4 wt.%). We investigated dependence of coating parameter such as dopant content in target and substrate temperature in the SZO films. The SZO films have a preferred orientation in the (002) direction. As amounts of the Ag dopant in the target were increased, the crystallinity and the transmittance and optical band gap were decreased. And the substrate temperature were increased, the crystallinity and the transmittance were increased. But the crystallinity and the transmittance of SZO films were retrograde at 200$^{\circ}C$. Upside facts were related with composition. In addition, the Oxygen K-edge features of the SZO films were investigated by using near edge X-ray absorption fine structure (NEXAFS) spectroscopy. Changes of optical band gap of the SZO films were explained compared with XRD, XPS and NEXAFS spectra.

  • PDF

Development of a Markov Chain Monte Carlo parameter estimation pipeline for compact binary coalescences with KAGRA GW detector (카그라 마코브 체인 몬테칼로 모수 추정 파이프라인 분석 개발과 밀집 쌍성의 물리량 측정)

  • Kim, Chunglee;Jeon, Chaeyeon;Lee, Hyung Won;Kim, Jeongcho;Tagoshi, Hideyuki
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.51.3-52
    • /
    • 2020
  • We present the status of the development of a Markov Chain Monte Carlo (MCMC) parameter estimation (PE) pipeline for compact binary coalescences (CBCs) with the Japanese KAGRA gravitational-wave (GW) detector. The pipeline is included in the KAGRA Algorithm Library (KAGALI). Basic functionalities are benchmarked from the LIGO Algorithm Library (LALSuite) but the KAGRA MCMC PE pipeline will provide a simpler, memory-efficient pipeline to estimate physical parameters from gravitational waves emitted from compact binaries consisting of black holes or neutron stars. Applying inspiral-merge-ringdown and inspiral waveforms, we performed simulations of various black hole binaries, we performed the code sanity check and performance test. In this talk, we present the situation of GW observation with the Covid-19 pandemic. In addition to preliminary PE results with the KAGALI MCMC PE pipeline, we discuss how we can optimize a CBC PE pipeline toward the next observation run.

  • PDF

Physical Offset of UAVs Calibration Method for Multi-sensor Fusion (다중 센서 융합을 위한 무인항공기 물리 오프셋 검보정 방법)

  • Kim, Cheolwook;Lim, Pyeong-chae;Chi, Junhwa;Kim, Taejung;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1125-1139
    • /
    • 2022
  • In an unmanned aerial vehicles (UAVs) system, a physical offset can be existed between the global positioning system/inertial measurement unit (GPS/IMU) sensor and the observation sensor such as a hyperspectral sensor, and a lidar sensor. As a result of the physical offset, a misalignment between each image can be occurred along with a flight direction. In particular, in a case of multi-sensor system, an observation sensor has to be replaced regularly to equip another observation sensor, and then, a high cost should be paid to acquire a calibration parameter. In this study, we establish a precise sensor model equation to apply for a multiple sensor in common and propose an independent physical offset estimation method. The proposed method consists of 3 steps. Firstly, we define an appropriate rotation matrix for our system, and an initial sensor model equation for direct-georeferencing. Next, an observation equation for the physical offset estimation is established by extracting a corresponding point between a ground control point and the observed data from a sensor. Finally, the physical offset is estimated based on the observed data, and the precise sensor model equation is established by applying the estimated parameters to the initial sensor model equation. 4 region's datasets(Jeon-ju, Incheon, Alaska, Norway) with a different latitude, longitude were compared to analyze the effects of the calibration parameter. We confirmed that a misalignment between images were adjusted after applying for the physical offset in the sensor model equation. An absolute position accuracy was analyzed in the Incheon dataset, compared to a ground control point. For the hyperspectral image, root mean square error (RMSE) for X, Y direction was calculated for 0.12 m, and for the point cloud, RMSE was calculated for 0.03 m. Furthermore, a relative position accuracy for a specific point between the adjusted point cloud and the hyperspectral images were also analyzed for 0.07 m, so we confirmed that a precise data mapping is available for an observation without a ground control point through the proposed estimation method, and we also confirmed a possibility of multi-sensor fusion. From this study, we expect that a flexible multi-sensor platform system can be operated through the independent parameter estimation method with an economic cost saving.

Impact of Physical Environment of Exhibition on the Experiences and Visitors' Satisfaction (전시회의 물리적 환경이 체험 및 참관객의 만족도에 미치는 영향)

  • Choi, Sook-Hee;Jeon, In-Oh
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.11
    • /
    • pp.313-337
    • /
    • 2012
  • Recently, according to the being activated exhibition, it has been focused on the participants in order to enhance its interest and satisfaction. Consequently it is set up the model of research and the hypotheses based on the leading study of the physical environment of the exhibition and experience This study would like to analyze how the physical environments of the exhibition are effected on the factor of the experience and the participants' satisfaction. It also would like to check the factor of the experience to promote the participants' call and provide the useful information for the exhibitors to raise the participants' satisfaction. Being set the physical environment of the exhibition(layout accessibility, Facility aesthetics, facility cleanliness, convenience, comfort, human services) as a independent variable and fix the factor of experience (sense, feel, think, act and relate) as a parameter, the participants' satisfaction is identified. As a result of the research, the factor of experience is affected by the physical environment of the exhibition and the participants' satisfaction is affected by the factor of the experience. Therefore, the exhibitors have to consider the physical environments of the exhibition and the factor of experience for making the participants' satisfaction high when they hold the exhibitions.

Reliability and validity of pelvic mobility measurement using a cushion sensor in healthy adults

  • Jung, Seung-Hwa;Kim, Su-Kyeong;Lee, Ji-Hyun;Choi, Soo-Ih;Park, Dae-Sung
    • Physical Therapy Rehabilitation Science
    • /
    • v.9 no.2
    • /
    • pp.74-81
    • /
    • 2020
  • Objective: To prevent low back pain, an objective evaluation tool to evaluate pelvic mobility and exercise to improve the flexibility of the lumbar region is needed. The purpose of this study was to compare the results of pelvic mobility measurements using the Wii Balance Board (WBB) and Sensbalance Therapy Cushion (STC), evaluate the usefulness of the STC as a tool for measuring pelvic mobility. Design: Cross-sectional study. Methods: Fifty healthy subjects participated in this study. The subjects performed pelvic mobility range, proprioception, reaction time and reach of the arm using the STC. The pelvic movement parameter was measured two times to determine the intra-rater reliability. To measure the correlation between lumbar muscle tension and pelvic mobility, Myovision was used to measure tension of L4, L5 level erector spinae muscle. Correlations between measured variables were checked to determine the validity of the pelvic mobility assessment tool. Results: STC showed high test-retest reliability in pelvic tilt measurement and reaching task [intraclass correlation coefficients (3,1)=0.804-0.915]. The relationship between WBB and STC showed a significant positive correlation with the pelvic tilt and reaching task (p<0.05). Posterior tilt and erector spinae activation (Lt. L5) showed a significant negative correlation (p<0.05). Left, right tilt and erector spinae activation (L5) showed a significant negative correlation (p<0.05). Conclusions: This study confirmed the advantages of the STC and found efficiency as an objective measuring device of pelvic mobility.

Damage estimation for structural safety evaluation using dynamic displace measurement (구조안전도 평가를 위한 동적변위 기반 손상도 추정 기법 개발)

  • Shin, Yoon-Soo;Kim, Junhee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.87-94
    • /
    • 2019
  • Recently, the advance of accurate dynamic displacement measurement devices, such as GPS, computer vision, and optic laser sensor, has enhanced the structural monitoring technology. In this study, the dynamic displacement data was used to verify the applicability of the structural physical parameter estimation method through subspace system identification. The subspace system identification theory for estimating state-space model from measured data and physics-based interpretation for deriving the physical parameter of the estimated system are presented. Three-degree-freedom steel structures were fabricated for the experimental verification of the theory in this study. Laser displacement sensor and accelerometer were used to measure the displacement data of each floor and the acceleration data of the shaking table. Discrete state-space model generated from measured data was verified for precision. The discrete state-space model generated from the measured data extracted the floor stiffness of the building after accuracy verification. In addition, based on the story stiffness extracted from the state space model, five column stiffening and damage samples were set up to extract the change rate of story stiffness for each sample. As a result, in case of reinforcement and damage under the same condition, the stiffness change showed a high matching rate.

Seismic Anisotropy Physical Modeling with Vertical Transversely Isotropic Media (VTI 매질의 탄성파 이방성 축소모형실험)

  • Ha, Young-Soo;Shin, Sung-Ryul
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.4
    • /
    • pp.307-314
    • /
    • 2010
  • Although conventional seismic data processing is based on the assumption that the media are isotropic, the subsurface is often anisotropy in shale formation or carbonate with cracks and fractures. This paper presents the anisotropic parameter and seismic modeling in transversely isotropic media with a vertical symmetry axis using seismic physical modeling. The experiment was successfully carried out with VTI media, laminated bakelite material, using contact transducer of p and s-wave transmission. The variation of velocities with angle of incidence was clearly shown in anisotropic material. Comparing these velocities with the calculated phase velocities, the (P) and (S)-wave velocity observed in anisotropic material was a very good agreement with the calculated values. Anisotropic parameter ${\varepsilon}$, ${\delta}$, ${\gamma}$ was estimated by using Lame's constant calculated from the observed velocity. For the purpose of testing (S)-wave polarization, a birefringence experiment was carried out. The higher velocity was associated with the polarization parallel to the fracture, and the lower velocity was associated with the polarization perpendicular to the fracture.