• Title/Summary/Keyword: Physical Optic

Search Result 78, Processing Time 0.025 seconds

Development of Hyaluronic Acid-Functionalized Hydrogel Lens and Characterization of Physical Properties and Lysozyme Adsorption (Hyaluronic acid의 첨가방법에 따른 하이드로겔 콘택트렌즈의 물리적 특성과 lysozyme 흡착량 비교)

  • Lim, Hwa-lim;Kim, Ho-joong;Jun, Jin
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.3
    • /
    • pp.285-291
    • /
    • 2015
  • Purpose: The hydrogel lenses have been functionalized with HA(Hyaluronic Acid) using two different methods: construction of an IPN(Interpenetrating Polymer Networks) and formation of CCB(Chemical Covalent Bonding). The lysozyme adsorption and physical properties such as optical transmittance and water content of the hydrogel lenses have been investigated in order to determine whether method is suitable for the application potentials in contact lens industry. Methods: HA have been added to the hydrogel lenses prepared in the Lab using the two different method, e.g. IPN and CCB. The optical transmittance was measured in the wavelength range of 300~800 nm. The water content was measured by the gravimetric method using 0.9% NaCl saline solution. The amounts of adsorbed lysozyme on the contact lenses was analyzed by HPLC after incubation for 12h in artificial tears. Results: The water content of the HA added hydrogel contact lenses was increased, and the lens made by IPN method showed higher water content than the lens made by CCB method. The optical transmittance was over 90% both before and after addition of HA. Comparing the lysozyme adsorption reduction ratio, contact lens manufactured by IPN method was 60.0%, and the lens made by CCB method was 40.4%. Conclusions: CCB method is appropriate to distribute the functional material evenly throughout the lens, whereas IPN method is effective for the case of giving the functionality on the lens surface without phase separation.

Multihop Connection Establishment Algorithms in Wavelength-Routed Optical Networks (파장분할다중화방식 전광통신망에서 다중홉 연결 알고리즘)

  • 김상완;서승우
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.7A
    • /
    • pp.951-958
    • /
    • 2000
  • In wavelength-routed all-optical networks, signals are transmitted on a direct optical path, or a lightpath, in a single-hop manner without opto-electronic/electro-optic(OE/EO) conversion at intermediate nodes. However, due to the physical constraints of optical elements such as ASE noise and crosstalk signals can be degraded un a long path. To establish a connection under such impairments, the optical signal may need to be regenerated at intermediate nodes, dividing a lightpath into two or more fragments. However, since signal regeneration at intermediate nodes requires additional network resources, the selection of these nodes should be made carefully to minimize blocking of other lightpaths. In this paper, we deal with the problem of establishing a lightpath in a multihop manner under physical constraints. We provide both minimal-cost and heuristic algorithms for locating signal regeneration nodes(SRNs). For a minimal-cost algorithm, we formulate the problem using dynamic programming(DP) such that blocking of other lightpaths due to the lack of transmitters/receivers(TXs/RXs) and wavelengths is minimized throughout the network.

  • PDF

Thermal Characteristic Analysis of a High-Precision Centerless Grinding Machine for Machining Ferrules (페룰 가공용 초정밀 무심 연삭기의 열 특성 해석)

  • Kim S.I.;Cho J.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.90-95
    • /
    • 2005
  • To perform the finish outside-diameter grinding process of ferrules which are widely used as fiber optic connectors, a high-precision centerless grinding machine is necessary. In this study, the thermal characteristics of the high-precision centerless grinding machine such as the temperature distribution, temperature rise and thermal deformation, are estimated based on the virtual prototype of the grinding machine and the heat generation rates of heat sources related to the machine operation conditions. The reliability of the predicted results is demonstrated by the temperature characteristics measured from the physical prototype. Especially, the predicted and measured results show the fact that the high-precision centerless grinding machine consisted of the hydrostatic GW and RW spindle systems, hydrostatic RW feeding mechanism, RW swivel mechanism, on-machine GW and RW dressers, and concrete-filled steel bed, has very stable thermal characteristics.

  • PDF

Industry-University-Research Collaborative Geoscientific Study in Pocheon area for Groundwater Survey, Part I: Borehole Technology (포천지역 지하수기초조사 산학연 공동탐사 사례연구(I): 공내탐사기술)

  • Yu, Young-Chul;Lee, Sang-Tae;You, Young-Jun;Hwang, Se-Ho;Sin, Je-Hyun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.117-122
    • /
    • 2005
  • The purpose of this study is to analyze a correlation between lithology, rock physical property and fracture zone by multiple-logging method, which includes optic borehole image, suspension type PS, resistivity, SP, natural gamma, density, caliper logging located in Ogar test area, Changsu, Pocheon-gun, Gyunggi Province. The outstanding geophysical logging responses particularly shown from lithology pattern, fracture zone, dike zone. in result, the depth of fracture zone which enable groundwater flow estimated at $67{\sim}69m$.

  • PDF

Reconstruction of the Inferior Orbital Wall with Simplified Simulation Technique in Case of the Fracture Extending to the Posterior Orbital Floor

  • Kim, Kyu Nam;Kim, Hoon
    • Journal of International Society for Simulation Surgery
    • /
    • v.3 no.2
    • /
    • pp.80-83
    • /
    • 2016
  • A 37-year-old male was assaulted and complained of severe periorbital swelling. Physical examination revealed that there were limitation of eyeball movement on upper gaze, diplopia, and hypoesthesia on the infraorbital nerve innervating region. Three-dimensional (3D) computed tomography (CT) of facial bone exhibited the fracture of orbital floor accompanying the significant amount of orbital contents' herniation extending to the far posterior part. To recover the orbital volume and restore orbital floor without threatening the optic nerve, preoperative simplified simulation was applied. The posterior margin of the fractured orbit was delineated with simulation technique using cross-linkage between the coronal and sagittal sections based on the referential axial view of the CT scans. Dissection, reduction of orbital contents, and insertion of the absorbable mesh plate molded after the prefabricated template by the simulation technique was performed. Extensive orbital floor defect was successfully reconstructed and there were no serious complications. The purpose of this report is to emphasize the necessity of preoperative simulation in case of restoring the extensive orbital floor defect.

Development of P-5 Transducer or Detection of the Pulse Wave (맥파검출용 트랜스듀서의 개발)

  • Han, S.H.;Kwon, O.S.;Park, S.H.;Hong, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.395-398
    • /
    • 1997
  • Human pulse represents the physical characteristics of heart and cardiovascular system. Therefore, malfunctions and errors of heart and cardiovascular system can be determined by using an automatic diagnosis system that can detect the pulse signal. Not only will the computerised system preclude the possibilities of observational errors by giving an accurate measurement with great stability, but minimize the possibilities of misinterpretation by using an automated diagnostic logic. A new combinational fiber-optic sensor, which has a detecting part and a transmitting part was used to acquire radial pulse signal noninvasively. The development of P-5 transducer makes it possible to obtain more effective detection and obvious display of pulse signals in the aspect of reliability. Using P-5 transducer in the field of plethysomography and MAC- JIN, one of our diagnoses in Korean traditional medicine, it is expected that we can ontain quantitative and valuable information or the diagnosis of human pulses.

  • PDF

Micromachining Characteristics inside Transparent Materials using Femtoseocond Laser Pulses (펨토초 레이저에 의한 투명 유리내부 미세가공특성)

  • Nam Ki-Gon;Cho Sung-Hak;Chang Won-Seok;Na Suck-Joo;Whang Kyung-Hyun;Kim Jae-Gu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.190-196
    • /
    • 2006
  • Transparent materials are widely used in the fields of optic parts and bio industry. We have experiment to find out the characteristics of the micromachining inside transparent materials using femtosecond laser pulses. With its non-linear effects by very high peak intensity, filament (plasma channel) was formed by the cause of the self-focusing and the self-defocusing. Physical damage could be found when the intensity is high enough to give rise to the thermal stress or evaporation. At the vicinity of the power which makes the visible damage or modification, the structural modification occurs with the slow scanning speed. According to the polarization direction to the scanning direction, the filament quality is quite different. There is a good quality when the polarization direction is parallel to the scanning direction. For fine filament, we could suggest the conditions of the high numerical aperture lens, the short shift of focusing point, the low scanning speed and the low power below 20 mW. As the examples of optics parts, we fabricated the fresnel zone plate with the $225{\mu}m$ diameter and Y-bend optical wave guide with the $5{\mu}m$ width.

Detection of Radial Pulse by Combinational Fiber-optic Transducer (조합형 광섬유 트랜스듀서에 의한 요골맥파의 검출)

  • Park, Seung-Hwan;Hong, Seung-Hong
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.197-202
    • /
    • 1998
  • The human pulse wave is a vital biosignal that includes the diagnostic data related with the heart and the cardiovascular system of human body. Based on the mechanical transducing method, a pulse detection transducer using optical fiber was developed to acquire the pulses non-invasively. To improve the detection efficiency, we proposed a new design that consists of two combinational parts; detecting part, which is in contact with the pulsating skin and transmits the displacement motion of the pulsating skin to the sensing part, and sensing part, which converts the physical quantity transmitted from the detecting part to electronic signal. By using the new method, we confirmed that the proposed transducer can detect the C point(incisura) and the T wave(tidal wave) which is not easily detected by existing transducers.

  • PDF

Damage estimation for structural safety evaluation using dynamic displace measurement (구조안전도 평가를 위한 동적변위 기반 손상도 추정 기법 개발)

  • Shin, Yoon-Soo;Kim, Junhee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.87-94
    • /
    • 2019
  • Recently, the advance of accurate dynamic displacement measurement devices, such as GPS, computer vision, and optic laser sensor, has enhanced the structural monitoring technology. In this study, the dynamic displacement data was used to verify the applicability of the structural physical parameter estimation method through subspace system identification. The subspace system identification theory for estimating state-space model from measured data and physics-based interpretation for deriving the physical parameter of the estimated system are presented. Three-degree-freedom steel structures were fabricated for the experimental verification of the theory in this study. Laser displacement sensor and accelerometer were used to measure the displacement data of each floor and the acceleration data of the shaking table. Discrete state-space model generated from measured data was verified for precision. The discrete state-space model generated from the measured data extracted the floor stiffness of the building after accuracy verification. In addition, based on the story stiffness extracted from the state space model, five column stiffening and damage samples were set up to extract the change rate of story stiffness for each sample. As a result, in case of reinforcement and damage under the same condition, the stiffness change showed a high matching rate.

A Real-Time Control Architecture for a Semi-Autonomous Underwater Vehicle (반자율 무인잠수정을 위한 실시간 제어 아키텍쳐)

  • LI JI-HONG;JEON BONG-HWAN;LEE PAN-MOOK;WON HONG-SEOK
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.198-203
    • /
    • 2004
  • This paper describes a real-time control architecture for DUSAUV (Dual Use Semi-Autonomous Underwater Vehicle), which has been developed at Korea Research Institute of Ships & Ocean Engineering (KRISO), KORDI, for being a test-bed oj development of technologies for underwater navigation and manipulator operation. DUSAUV has three built-in computers, seven thrusters for 6 degree of freedom motion control, one 4-function electric manipulator, one pan/tilt unit for camera, one ballasting motor, built-in power source, and various sensors such as IMU, DVL, sonar, and so on. A supervisor control system for GUI and manipulator operation is mounted on the surface vessel and communicates with vehicle through a fiber optic link. Furthermore, QNX, one of real-time operating system, is ported on the built-in control and navigation computers of vehicle for real-time control purpose, while MicroSoft OS product is ported on the supervisor system for GUI programming convenience. A hierarchical control architecture which consist of three layers (application layer, real-time layer, and physical layer) has been developed for efficient control system of above complex underwater robotic system. The experimental results with implementation of the layered control architecture for various motion control of DUSAUV in a basin of KRISO is also provided.

  • PDF