• 제목/요약/키워드: Physical Optic

Search Result 78, Processing Time 0.033 seconds

Characteristics and Signal Analysis of Fiber-optic Sensor for Detecting Ultrasonic Waves Generated by Discharge in Insulation Oil (유중 방전에 의한 초음파 측정용 광섬유 센서 특성 및 측정 데이터 분석)

  • 이상훈;송현직;이광식;김달우
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.10
    • /
    • pp.481-486
    • /
    • 2003
  • It is well known that a discharge in oil is the source of various physical phenomena. Ultrasonic-wave detection is a useful method to the diagnosis of the transformer-insulation condition. Conventionally, ultrasonic waves are detected by Piezo-electric transducer, and we use optical method that has many advantages. In this paper, we constructed a Mach-Zehnder interferometer with optical fiber and investigated the principle of operation. Test arrangement is based on the needle-plane electrode system in oil and applied AC high voltage. Ultrasonic waves were detected and analyzed with wavelet transform.

Synthesis and Characterization of Nonlinear Optical Polymers Having Quinoline-based Chromophores

  • Kim, Min-Ho;Jin, Jung-Il;Lee, Chul-Joo;Kim, Nak-Joong;Park, Ki-Hong
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.7
    • /
    • pp.964-970
    • /
    • 2002
  • We synthesized three kinds of chromophores incorporating aromatic quinoline unit as a $\pi-conjugated$ bridge in order to prepare more thermally stable nonlinear optical (NLO) chromophores than general stilbene unit. The NLO poly(methylmethacrylate) copolymer, polyimides, and polyester were successfully synthesized by these corresponding quinoline-based monomers. Their physical and optical properties were investigated by thermogravimetry, gel permeation chromatography, ultraviolet-visible spectroscopy, second harmonic generation (SHG) and electro-optic (EO) measurement. All the polymers exhibited better thermal stability,however their NLO activity was a little lower than that of general stilbene-based NLO polymers. Among three kinds of polymers, the PMMA copolymer with quinoline chromophores had the largest SHG coefficient d33 value of 27 pm/V (at 1.064 $\mu\textrm{m})$ and EO coefficient r33 value of 6.8 pm/V (at 1.3 $\mu\textrm{m}$).

Acousto-optic generation of orbital angular momentum states of light in a tapered optical fiber

  • Song, Changkeun;Park, Hee Su;Song, Kwang Yong;Kim, Byoung Yoon
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1441-1446
    • /
    • 2018
  • We demonstrate an acousto-optic mode converter based on a tapered optical fiber to efficiently generate orbital angular momentum states of light. In our scheme an acoustic wave is deployed to the waist of tapered optical fiber where two degenerate $HE_{21}$ modes leading to +1 and -1 orbital angular momentum eigen-modes are resonantly excited. The excitation of $TM_{01}$ and $TE_{01}$ modes is suppressed by enlarging the intermodal index difference between near-degenerate spatial modes. Numerical calculation for optimization of the taper diameter is provided. The experimental characterization of generated states is performed by analyzing the output far-field pattern and the spatial interference fringes with a uniform reference beam.

Real-time Measurements of Water Level and Temperature using Fiber-optic Sensors Based on an OTDR (광섬유와 OTDR을 이용한 실시간 수위 및 온도 측정)

  • Sim, Hyeok In;Yoo, Wook Jae;Shin, Sang Hun;Jang, Jaeseok;Kim, Jae Seok;Jang, Kyoung Won;Cho, Seunghyun;Moon, Joo Hyun;Lee, Bongsoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1239-1244
    • /
    • 2014
  • In this study, two fiber-optic sensors were fabricated to measure water level and temperature using optical fibers, a coupler, a Lophine and an OTDR (optical time-domain reflectometer). First, using Fresnel's reflection generated at the distal-ends of each optical fiber, which was installed at different depth, we measured the water level according to the variation of water level. Next, we also measured the temperature of water using a temperature sensing probe based on the Lophine, whose absorbance changes with the temperature. The measurable temperature range of the fiber-optic sensor is from $5^{\circ}C$ to $65^{\circ}C$ because the maximum operation temperature of the optical fiber without a physical deterioration is up to $80^{\circ}C$.

Fiber-Optic Sensor Using Bending-Sensitive Fiber (굽힘에 민감한 광섬유를 이용한 광섬유 센서)

  • Lee Dong ho;Kwon Kwang Hee;Lee Cherl hee;Song Jae Won;park Jae hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.10A
    • /
    • pp.1200-1204
    • /
    • 2004
  • Fiber-optic sensor (FOS) using bending-sensitive fiber (BSF which detects physical variables according to the variation of fiber-bending is proposed. BSF is already used in variable optical attenuator. Three-dimensional finite difference beam propagation method (3D FD-BPM) is used to investigate the bending loss of BSF. Then, the results of bending experiment with FOS consisting of BSF is compared to numerical results of 3D FD-BPM. In particular, the optical power of fabricated FOS with BSF varies from -ldB to -2OdB when pressure given to the upper side of FOS changes from 0 MPa to 0.005 MPa, while the FOS consists of SMF shows no change of optical power at the same condition.

Experimental Study on Levee Monitoring System for Abnormality Detection Using Fiber Optic Temperature Sensing (광섬유 온도 센싱을 활용한 제방의 이상 감지 모니터링 시스템에 대한 실험 연구)

  • Ahn, Myeonghui;Ko, Dongwoo;Ji, Un;Kang, Joongu
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.2
    • /
    • pp.120-127
    • /
    • 2019
  • Medium-scale levee experiments were performed to monitor the infiltration and failure of levee body by applying fiber optic temperature sensing. In this study, bio-polymer soil was spread in the levee slope to increase the strength and intensity. Therefore, the infiltration and failure by overflows were produced in a different way compared to general soil type of levees. This was also observed in the experiment data for temperature changes monitored by fiber-optic distributed temperature sensing system. Through the analysis of temperature changes at specific location by time, the location and initiation time for physical changes and infiltration in levee body could be identified based on temperature variation. In this experiment, the time of rapid changes in temperature was ahead in the inland slope rather than the forceland slope. It was corresponding to the levee failure sequence of first inland slope failure and then the forceland slope failure.

Convection in the growth of zinc telluride single crystal by physical vapor transport

  • Kim, Geug-Tae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.4
    • /
    • pp.187-198
    • /
    • 2003
  • Zinc selenide (ZnSe) single crystals hold promise for many electro-optics, acousto-optic and green laser generation applications. This material is prepared in closed ampoules by the physical vapor transport (PVT) growth method based on the dissociative sublimation. We investigate the effects of diffusive-convection on the crystal growth rate of ZnSe with a low vapor pressure system in a horizontal configuration. Our results show that for the ratios of partial pressures, s=0.2 and 2.9, the growth rate increases with the Peclet number and the temperature differences between the source and crystal. As the ratio of partial pressures approaches the stoichiometric value of 2, the rate increases. The mass fluk based on one dimensional (1D model) flow for low vapor pressure system fall within the range of the predictions (2D model) obtained by solving the coupled set of conservation equations, which indicates the flow fields would be advective-diffusive. Therefore, the rate and the flow fields are independent of gravity acceleration levels.

A Study on the Characteristics analysis of Optic Tunable Filter Using Fabry-Perot Interferometer (FPI를 이용한 파장가변 광 필터 특성분석에 관한 연구)

  • Jang, Woo-Soon
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.3-6
    • /
    • 2005
  • In this thesis, We researched on the characteristics of optical tunable filter that selects the channel by the wavelength changes of transmission spectrum when we apply outer physical quantities on a fiber bragg grating by using Fabry-Perot Interformer's operational principle.

  • PDF

Hetero-core Spliced Fiber Optic Sensing System for Environmental Monitoring (환경정보 모니터링을 위한 헤테로코어형 광파이버 센싱 시스템)

  • Kim, Young Bok;Kim, Young Bae;Lee, Hwan Woo
    • Journal of Korean Society of societal Security
    • /
    • v.1 no.3
    • /
    • pp.77-81
    • /
    • 2008
  • In this paper, we introduce a multi purpose environmental monitoring system developed as a commercially available standard using the technique of hetero-core spliced fiber optic sensor. The monitoring system has been tested and evaluated in a possible outdoor condition in view of the full scaled operation at actual sites to be monitored. Additionally, the developed system in this work conveniently provides us with various options of sensor modules intended for monitoring such physical quantities as displacement, distortion, pressure, binary states, and liquid adhesion. Two channels of optical fiber line were monitored, in each of which three displacement sensor modules were connected in series, in order to examine the performance to a pseudo-cracking experiment in the outdoor situation, and to clarify temperature influences to the system in terms of the coupling of optical connectors and the OTDR stability. The pseudo-cracking experiment successfully observed the actually given cracks by means of calculation based on the detected displacement values and their geometrical arrangement of the used sensor modules. And the robustness to the temperature is verified in the various temperature change.

  • PDF