• Title/Summary/Keyword: Physical Boundary

Search Result 608, Processing Time 0.023 seconds

Design of Robust PI Controller for Vehicle Suspension System

  • Yeroglu, Celaleddin;Tan, Nusret
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.135-142
    • /
    • 2008
  • This paper deals with the design of a robust PI controller for a vehicle suspension system. A method, which is related to computation of all stabilizing PI controllers, is applied to the vehicle suspension system in order to obtain optimum control between passenger comfort and driving performance. The PI controller parameters are calculated by plotting the stability boundary locus in the $(k_p,\;k_i)$-plane and illustrative results are presented. In reality, like all physical systems, the vehicle suspension system parameters contain uncertainty. Thus, the proposed method is also used to compute all the parameters of a PI controller that stabilize a vehicle suspension system with uncertain parameters.

Discrete singular convolution method for bending analysis of Reissner/Mindlin plates using geometric transformation

  • Civalek, Omer;Emsen, Engin
    • Steel and Composite Structures
    • /
    • v.9 no.1
    • /
    • pp.59-75
    • /
    • 2009
  • In this study, a simple approach for bending analysis of Reissner-Mindlin plates is presented using the four-node quadrilateral domain transformation based on discrete singular convolution. In the proposed approach, irregular physical domain is transformed into a rectangular domain by using the geometric coordinate transformation. The DSC procedures are then applied to discrete the governing equations and boundary conditions. The accuracy of the proposed method is verified by comparison with known solutions obtained by other numerical or analytical methods. Results for Reissner-Mindlin plates show a satisfactory agreement with the analytical and numerical solutions.

Thermomechanical deformation in porous generalized thermoelastic body with variable material properties

  • Kumar, Rajneesh;Devi, Savita
    • Structural Engineering and Mechanics
    • /
    • v.34 no.3
    • /
    • pp.285-300
    • /
    • 2010
  • The two-dimensional deformation of a homogeneous, isotropic thermoelastic half-space with voids with variable modulus of elasticity and thermal conductivity subjected to thermomechanical boundary conditions has been investigated. The formulation is applied to the coupled theory(CT) as well as generalized theories: Lord and Shulman theory with one relaxation time(LS), Green and Lindsay theory with two relaxation times(GL) Chandrasekharaiah and Tzou theory with dual phase lag(C-T) of thermoelasticity. The Laplace and Fourier transforms techniques are used to solve the problem. As an application, concentrated/uniformly distributed mechanical or thermal sources have been considered to illustrate the utility of the approach. The integral transforms have been inverted by using a numerical inversion technique to obtain the components of displacement, stress, changes in volume fraction field and temperature distribution in the physical domain. The effect of dependence of modulus of elasticity on the components of stress, changes in volume fraction field and temperature distribution are illustrated graphically for a specific model. Different special cases are also deduced.

Combined Bed Combustion and Gas Flow Simulation for a Grate Type Incinerator (폐기물 층 연소와 노내 유동 해석)

  • Ryu, Chang-Kook;Shin, Dong-Hoon;Choi, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.67-75
    • /
    • 2000
  • Computational fluid dynamics(CFD) analysis of the thermal flow in a municipal solid waste(MSW) incinerator combustion chamber provides crucial insight on the incinerator performance. However, the combustion of the waste bed is typically treated as an arbitrarily selected profile of combustion gas. A strategy for simultaneous simulation of the waste bed combustion and the thermal flow fields in the furnace chamber was introduced to substitute the simple inlet condition. A waste bed combustion model was constructed to predict the progress of combustion in the bed and corresponding generation of the gas phase species, which assumes the moving bed as a packed bed of homogeneous fuel particles. When coupled with CFD, it provides boundary conditions such as gas temperature and species distribution over the grate, and receives radiative heat flux from CFD. The combined simulation successfully predicted the physical processes of the waste bed combustion and its interaction with the flow fields for various design and operating parameters, which was limited in the previous CFD simulations.

  • PDF

MANIFESTATIONS OF THE INDIAN OCEAN TSUNAMI OF 2004 IN SATELLITE NADIR-VIEWING RADAR BACKSCATTER VARIATIONS

  • Troitskaya, Yuliya I.;Ermakov, Stanislav A.
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.39-42
    • /
    • 2006
  • The paper reports on the first experimental evidence for space-observed manifestation of the open ocean tsunami in the microwave radar backscatter (in C- and Ku-bands). Significant variations of the radar cross section synchronous with the sea level anomaly were found in the geophysical data record of the altimetry satellite Jason-1 for the track which crossed the head wave of the catastrophic tsunami of 26 December 2004. The simultaneous analysis of the available complementary data provided by the satellite three-channel radiometer enabled us to exclude meteorological factors as possible causes of the observed signal modulation. A possible physical mechanism of modulation of short wind waves due to transformation of the thin boundary layer in the air by a tsunami wave is discussed. The results open new possibilities of monitoring tsunamis from space..

  • PDF

Application of Eringen's nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams

  • Ebrahimi, Farzad;Shafiei, Navvab
    • Smart Structures and Systems
    • /
    • v.17 no.5
    • /
    • pp.837-857
    • /
    • 2016
  • In the present study, for first time the size dependent vibration behavior of a rotating functionally graded (FG) Timoshenko nanobeam based on Eringen's nonlocal theory is investigated. It is assumed that the physical and mechanical properties of the FG nanobeam are varying along the thickness based on a power law equation. The governing equations are determined using Hamilton's principle and the generalized differential quadrature method (GDQM) is used to obtain the results for cantilever boundary conditions. The accuracy and validity of the results are shown through several numerical examples. In order to display the influence of size effect on first three natural frequencies due to change of some important nanobeam parameters such as material length scale, angular velocity and gradient index of FG material, several diagrams and tables are presented. The results of this article can be used in designing and optimizing elastic and rotary type nano-electro-mechanical systems (NEMS) like nano-motors and nano-robots including rotating parts.

A Study on the Evaluation and Identity Elements in the Street Spaces (가로공간에 있어서 아이덴티티 요소와 평가에 관한 연구)

  • Kwack, Dong-Wha;Lee, Jeong-Mi
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.9 no.3
    • /
    • pp.47-57
    • /
    • 2009
  • The purpose of this study is to propose the design elements useful to give place identity to street space. The theory for place identity is studied and the components-Physical element, Sense, Program, Activity, Context-for identity of place is created. In the case study of SamcheongdongGil, the qualitative research method of Free Picturing Technique and Cognitive Mapping is executed and the samples gathered from the research are analyzed. In the process of analysis, the contents of qualitative evaluation by users is put in order as components for identity of place. Moreover, the design elements for street space are extracted from the case study and theories of urban design. The design elements are summarized as the followings: street pattern with high permeability, various streetscapes, greenscapes, semi public(private) spaces, the third places, public arts, transparent facades, and outdoor activities. Finally, the fruits and boundary of this study are described and the importance of place identity is.

  • PDF

A numerical study on the flow and noise radiation in curved intake (굴곡형 흡입구에서의 유동 및 소음방사 해석)

  • Shim, In-Bo;Lee, Duck-Joo;An, Chang-Su
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.76-80
    • /
    • 2001
  • Unsteady compressible Euler equation is solved and the high-order, high-resolution numerical solver, physical boundary condition, adaptive nonlinear artificial dissipation model and conformal mapping are applied to computation of steady transonic flow and unsteady acoustics. The acoustic characteristics of axi-symmetric duct and two dimensional straight/S channel are studied and the computation results shows good agreements with linear analysis. In transonic case, local time stepping and canceling-the-residual techniques are used for convergence acceleration. The aspect of flow and acoustics in S-channel and the Pattern of noise radiation is changed by inflow Mach no. and static pressure at fan-face.

  • PDF

Experimental Study of Trailing Edge Shape of Forward Curved Blade upon Radiated Noise (원심 전향익 송풍기 날개 후단의 형상에 따른 소음 분석)

  • KIM, H.-J.;JUNG, K.-H.;LEE, C.-J.;LEE, S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.137-142
    • /
    • 2000
  • The turbulent broadband sound power from a forward curved bladed fan can be modeled by the trailing edge noise. The trailing edge noise is usually influenced by inflow turbulence, separation, and boundary layer on the blade. This paper reports the effects of the solidity (C/s) and the stagger angles upon the trailing edge noise with respect to the trailing edge shapes of circular-arc cambered blade of multi-bladed fan, and discusses the major physical mechanism of reduced noise lot the circular trailing-edged case.

  • PDF

CYLINDRICAL MIXING LAYER MODEL IN STELLAR JET (항성 제트의 원통형 혼합층 모델)

  • Choe, Seung-Eon;Yu, Gyeong-Hui
    • Publications of The Korean Astronomical Society
    • /
    • v.9 no.1
    • /
    • pp.21-38
    • /
    • 1994
  • We have developed a cylindrical mixing layer model of a stellar jet including cooling effect in order to understand an optical emission mechanism along collimated high velocity stellar jets associated with young stellar objects. The cylindrical results have been calculated to be the same as the 2D ones presented by Canto & Raga(1991) because the entrainment efficiency in our cylindrical model has been obtained to be the same value as the 2D model has given. We have discussed the morphological and physical characteristics of the mixing layers by the cooling effect. As the jet Mach number increases, the initial temperature of the mixing layer goes high because the kinetic energy of the jet partly converts to the thermal energy of the mixing layer. The initial cooling of the mixing layer is very severe, changing its outer boundary radius. A subsequent change becomes adiabatic. The number of the Mach disks in the stellar jet and the total radiative luminosity of the mixing layer, based on our cylindrical calculation, have quite agreed with the observations.

  • PDF