• Title/Summary/Keyword: Phyllite

Search Result 69, Processing Time 0.029 seconds

A Case Study on Collapse Characteristics of Slope during Construction in the Chung-Cheong Area (시공 중 비탈면의 붕괴 특성에 대한 충청지역 사례연구)

  • Lee, Jundae;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.10
    • /
    • pp.23-32
    • /
    • 2015
  • Most studies on slope collapsed have focused on collapse cases that occur on stabilized slopes in public use. Few studies have been conducted on the collapse characteristics of slopes that occur during construction before stabilization of the slope. In this study, detailed investigation was conducted for 79 sites where slope collapse occurred during or immediately after construction in the Chungcheong region, and their geometrical characteristics, collapse characteristics, design and reinforcement methods were evaluated. As a result of this analysis, it was found that the Chungbuk (CB) area was marked by plane-type collapse and surface layer collapse whereas the Chungnam (CN) area was marked by surface layer collapse or loss of sedimentary rocks. Furthermore, the major collapse factors of the Chungbuk region were joint alternations (53%) and weathering (25%), and the blocking due to multidirectional joints and foliation was also an influencing factor. In the phyllite area, too, the development of joints (55%) was a major factor, but the geological characteristics (36%) of sedimentary rocks such as faults and coaly shale also had considerable effects. Therefore, the geological, climatic, and environment characteristics were found to have affected the stability of slopes.

Metamorphism of the Meta-Sedimentary Rocks in the Osu-Jinan Area, Cheonrapuk-Do, Korea (전라북도 오수-진안 지역에 분포하는 변성퇴적암류에 대한 변성작용)

  • Ahn, Kun Sang;Kim, Yong Jun;Shin, In Hyun
    • Economic and Environmental Geology
    • /
    • v.30 no.2
    • /
    • pp.163-174
    • /
    • 1997
  • Precambrian metapelites and metapsammites of the Jinan-Osu area (so-called Seologri and Yongamsan Formation) consist of black slate, phyllite, mica schist, quartzite and rarely calc schist. They are intruded by Sunkagsan granite gneiss, Foliated granodiorite, Amphibolite, Sunchang foliated granite and Namwon granite. Mylonite texture, crenulation cleavage and minor shear zone are common. The meta-sedimentary rocks include various rock-fragments xenoliths in size (up to 3 cm) and rock-type. They have various porphyroblastic spots in size (up to 1 cm) and their mineral composition is different. The xenoliths are schists, granite and quartzite, which are rectangular or lens form and recrystallized muscovite, chlorite and quartz. Spots are andalusite and biotite aggregates extensively replaced by chlorite. The metamorphic terrain is divided into three zones of progressive metamorphism on the basis of mineral assemblage. They are chlorite zone, chloite-biotite zone and andalusite-biotite zone ascending order, from west to east approximately. Isograd reactions are phengitic muscovite + chlorite = less phengitic muscovite + biotite + quartz + $H_2O$ and muscovite + chlorite + quartz = andalusite + biotite + $H_2O$ between the chlorite zone and chlorite-biotite zone, and between the chloritebiotite zone and andalusite-biotite zone, respectively. Sample B6 (exposed near the Obong-ri) includes staurolites and greenish biotites, that is different in mineral assemblage and chemical composition from the meta-sedimentary rocks. Sample A12 (exposed near the Shinam-ri) has greenish white spots (up to 1 cm in diameter) mainly composed of Kfeldspar, quartz and sillimanite replaced by muscovite.

  • PDF

Effect of geological characteristics on differential weathering of low-graded metasedimentary rock slopes (저변성퇴적암 사면에서 지질특성이 차별풍화에 미치는 영향)

  • Jeong, Hae-Geun;Seo, Yong-Seok;Ihm, Myung-Hyeok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.4
    • /
    • pp.375-385
    • /
    • 2013
  • This study evaluates correlation between petrographic characteristics and weathering grade of low-graded metasedimentary rocks mainly consisting of phyllite. Weathering grade of rock material was determined based on the results of geological survey. The Schmidt hammer test was carried out to obtain estimates of strength of rock materials. Point counting and microscopic observation were also conducted to analyze mineral composition and to measure spacing of foliation for 9 rock specimens. As a result of microscopic analysis, as the weathering grade was lower, the quartz was found more in quantity, consequently making rock stronger against weathering process. On the other side, lower weathering grade of rock resulted in less content of mica which is weak against weathering process. In addition, the rock materials with closer foliation spacing are found to be weaker in strength and have higher weathering grade.

Study on the Characteristics of the Stone-Cultural Properties and Weathering Phenomena of the Rocks for Conservation( I ) - Yongin-gun and Eechon-gun, Gyeonggi-do - (보존을 위한 석조문화재의 특징과 암석에 대한 연구( I ) -경기도 용인군과 이천군-)

  • Park, Kyung Rip;Lee, Sang Hun;Shin, Jong Won
    • Journal of Conservation Science
    • /
    • v.5 no.1 s.5
    • /
    • pp.41-68
    • /
    • 1996
  • Stone-cultural-properties, distributed In the area, have been investigated and studied on the characteristics and the rock phases in the geological and conservational point of view. Stone-Buddhas in the area can be subdivided into Maebul-, General -, and Massive rock-types according to their styles. The rocks used in these stone-cultural-properties are mainly massive, coarse grained biotite granite of the Jurassic age, which is widely distributed around the Reckon-gun area. However, quartz-feldspathic banded gneiss, marble, phyllite and hornblendite are also used. These rocks are mainly distributed in the Yongin-gun area. This suggests that the rocks used. These rocks are strongly influenced by chemical weathering so that the rock surface is very irregular with $2\~3mm$ relief. Biotite granite used shows generally weathered surface of brown color due to chemical weathering of feldspars. Moss are pervasive partly on the surface to show black and/or green colors. The strong weathering may induce secondarily to appear the igneous lineation, onion-structure, and/or minor cracks latent in the rocks. The cultural properties In the area are relatively well conserved except Maebuls and one(Duchangri 3-story) pagoda. However, one stone-buddha may be grinded recently by machine to take off the weathered surface resulting in the loss of its age and the original detailed shape. For conservation, they must be scientifically considered on the shape, kind of the rock phase and characteristics of the weathered phenomena.

  • PDF

Suggestion of Regression Equations for Estimating RMR Factor Rating by Geological Condition (지질 조건을 고려한 RMR 인자값 추정을 위한 선형회귀식 제안)

  • Kim, Kwang-Yeom;Yim, Sung-Bin;Kim, Sung-Kwon;Kim, Chang-Yong;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.555-566
    • /
    • 2007
  • In general, RMR classification system is used for the support design of a tunnel. Face mapping during excavation and RMR-based rock classifications are conducted in order to provide information for complementary changes to preliminary survey plans and for continuous geological estimations in direction of tunnel route. Although they are ever so important, there are not enough time for survey in general and sometimes even face mapping is not available. Linear regression analysis for the estimation of mediating RQD and condition of discontinuities, which require longer time and more detailed observation in RMR, was performed and optimum regression equations are suggest as the result. The geological data collected from tunnels were analyzed in accordance with three rock types as sedimentary rock, phyllite and granite to see geological effects, generally not been considered in previous researches. Parameters for the regression analysis were set another RMR factor.

The Study of Structure and Petrology of The Area Between Susanri and Hwanggangri (수산리(水山里)-황강리지역(黃江里地域)의 지질구조(地質構造)와 암석학적(岩石學的) 연구(硏究))

  • Kim, Ok Joon;Kim, Kyu Han
    • Economic and Environmental Geology
    • /
    • v.7 no.3
    • /
    • pp.101-122
    • /
    • 1974
  • The study area is located in between Susanri and Hwanggangri where the formations of Okcheon group and Chosun group supposedly come in contact so that the area is structurally very import. Present study reveals that the meta-volcanic rocks distribute from south to north along contact zone of Okcheon and Chosun groups in the center of the area. Meta-volcanic rocks seem to be originated from the andesite or andesitic basalt rocks which was known to be Surchangri formation consist of phyllite and black slate by previous workers. The meta-volcanic rocks intruded along the fault zone one existed between Okcheon and Chosun groups but obliterated at present by the intrusion of volcanic rocks. The fault seems to be overthrust, and one of the positive evidences of thrust fault is the Yamisan nappe structure in Yamisan near Susanri. This interpretation coincides with O.J. Kim's work which states that the Precambrian Okcheon group is largely overturned and thrusted over the Chosun group. The relation between the Surchangri and the Majeonri formation marks facies change. This fact together with northpluging anticlinal structure made it possible that both formation came into contact along direction without fault. Yongam formation is not overlain unconformably used to be believed by previous workers, but interbed in the Great Limestone series of Chosun goup. It is also clarified that the rock formerly designated as limesilicate rock was meta-liparite. The origin of amphibole pebbles in the Kunjasan formation is of primary and secondary ones; the secondary pebbles were formed by metamorphism of the fragments of limestone or dolomite.

  • PDF

Comparisons of Inorganic Compounds between the Ginsengs, Keumsan, Chungnam and their Soils (충남 금산의 인삼 및 토양의 무기 원소 함량 비교)

  • Song, Suck-Hwan;You, Seon-Gyun;Kim, Ill-Chool
    • Korean Journal of Plant Resources
    • /
    • v.20 no.1
    • /
    • pp.12-21
    • /
    • 2007
  • Ginsengs (1,2 3 years) from the Keumsan are analysed for the inorganic compounds and compared with the their soils from the granite, phyllite and shale areas. In the soils, the granite areas show high $Al_2O_3\;and\;Na_2O$ contents while the phyllite areas have high $Fe_2O_3,\;MnO\;and\;MgO$ contents. Positive correlations are shown in the $Al_2O_3-K_2O\;and\;Fe_2O_3-MgO$ pairs while negative correlations are shown in the $SiO_2-CaO$ pair. In the ginsengs, the shale areas are high in the most of the elements, but low in the granite areas. Compared with same soils of different ages, Al, Na and Ti contents of the ginsengs are high in the all areas. The shale areas are mainly high in the upper parts while the granite areas are mainly high in the root parts. Regardless of the localities, Fe, Mn and Ca contents are high in the upper parts while Ti contents are high in the root parts with differences of several times. Relative ratios between field soils and ginsengs (field soil/ginseng) suggest that the ginsengs show high Ca contents with differences of several ten times whereas the soils have high Na, Fe, Ti and Al contents with differences of several times. Regardless of the localities, the ratios of the Al, Mn and Na are high in the 2 year relative to the 3 year. Overall ratios between field soils and ginsengs are mainly big in the 2 year area relative to the 3 year area. It suggests that contents of the 3 year ginsengs are more similar to those of their soils relative to the 2 year and the ginsengs may absorpt eligible element contents with increasing ages.

Geochemical Studies of $CO_2$-rich Waters in Chojeong area II. Isotope Study (초정지역 탄산수의 지화학적 연구 II. 동위원소)

  • 고용권;김천수;배대석;최현수
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.4
    • /
    • pp.171-179
    • /
    • 1999
  • The $CO_2$-rich waters in the Chojeong area are characterized by low pH (5.0~5.8), high $CO_2$pressure (about 1 atm) and high amounts of total dissolved iou (up to 989 mg/L) and chemically belong to Ca-HC $O_3$type. The oxygen. deuterium and tritium isotope data indicate that the mixing process occurred between $CO_2$-rich water and surface water and/or shallow groundwaters and also suggest that the $CO_2$-rich water has been derived from meteoric waters. According to $\delta$$^{13}$ C values (-8.6~-5.3$\textperthousand$). the $CO_2$ in the water is attributed from deep seated $CO_2$gas. The high dissolved carbon (-14.4~-6.8$\textperthousand$. $\delta$$^{13}$ C) in groundwater of the granitic terrain might be affected by $CO_2$-rich water, whereas the dissolved carbon (-17.9~-15.2$\textperthousand$. $\delta$$^{13}$ C) in groundwater of the metamorphic terrain is likely controlled by soil $CO_2$ and from the reaction with calcite in phyllite. Sulfur isotope data (+3.5~+11.3$\textperthousand$,$\delta$$^{34}$ $S_{SO4}$) also support the mixing process between $CO_2$-rich water and shallow groundwater. Strontium isotopic ratio ($^{87}$ Sr/$^{86}$ Sr) indicates that the $CO_2$-rich water (0.7138~0.7156) is not related to vein calcite (0.7184) of Buak mine or calcite (0.7281~0.7346) in phyllite. By nitrogen isotope ($\delta$$^{15}$ $N_{NO3}$) the sources of nitrogen (up to 55.0 mg/L, N $O_3$) in the $CO_2$-rich water are identified as fertilizer and animal manure. It also indicates the possibility of denitrification during the circulation of nitrogen in the Chojeong area. The possible evolution model of the $CO_2$-rich water based on the hydrochemical and environmental isotopic data was proposed in this study. The $CO_2$-rich waters from the Chojeong area were primarily derived from the reaction with granite by supply of deep seated $CO_2$. and then the $CO_2$-rich water was mixed and diluted with the local groundwater.ter.

  • PDF

Thermal Water Level Change and Geochemistry in the Suanbo Area, Korea (수안보지역의 온천수위 변동과 수리지구화학에 관한 연구)

  • Yum, Byoung-Woo;Kim, Yongje
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.2
    • /
    • pp.59-65
    • /
    • 1999
  • Both the groundwater changes due to different pumping rates and the geochemistry of thermal waters in the Suanbo area are considered in this study. The observation of groundwater level change since 1991 shows that the change is directly correlated with pumping rates of thermal waters and reveals the retardation of ca. 5 weeks after pumping. The hydrogeological aquifer in the area is under reducing condition. The thermal waters are of Na-HCO$_3$ type. and are alkaline (pH=8.5∼8.7) with low TDS values (274∼284 mg/l) and high concentrations of Na (68∼72 mg/l). F (6.4∼8.9 mg/l), and HCO$_3$(136∼146 mg/l). Oxygen and hydrogen isotope ratios of thermal water indicate a meteoric water origin. The activities of Rn-222 and Ra-226 in both thermal water and local groundwater were determined to delineate possible geochemical controls on the Rn-222 and Ra-226. The Rn-222 concentrations are several orders of magnitude greater than the Ra-226 concentrations. The concentrations of Rn-222 range from 190 to 7.490 pCi/1 with an average of 2,522 pCil/l. and those of Ra-226 average 0.32 pCi/1 with the range from 0.25 to 0.42 pCi/1. The concentrations of Rn-222 and Ra-226 are inversely correlated with EC and alkalinity. The pH it positively correlated with Ra-226. The correlation between Rn-222 and Ra-226 is poor. Thermal waters in the study area are produced from highly fractured phyllite. The thermal water qualify. CSAMT (controled-source audiofrequency magnetotelluric) prospecting, and petrological evidences, however, indicate that the heat is possibly transmitted through deep normal faults reaching a deep granite batholith, and the phyllite acts only as a groundwater pathway.

  • PDF

Analysis on Physical and Mechanical Properties of Fault Materials using Laboratory Tests (실내시험을 통한 단층물질의 물리·역학적 특성 분석)

  • Moon, Seong-Woo;Yun, Hyun-Seok;Seo, Yong-Seok;Chae, Byung-Gon
    • The Journal of Engineering Geology
    • /
    • v.27 no.1
    • /
    • pp.91-101
    • /
    • 2017
  • Fault materials has various properties depending on their areas, rock types, and components because they are formed by heterogeneous and complicated mechanisms. In this study, to understand the physical and mechanical properties of fault materials, 109 fault materials distributed in South Korea were collected to conduct various laboratory tests with them and analyze their physical and mechanical properties (unit weight, specific gravity, porosity, gravel content, silt/clay content, clay mineral content, friction angle, and cohesion) according to areas, rock types, and components. As for the physical and mechanical properties by rock type, gneiss shows the highest medians in the unit weight ($17.1kN/m^3$) and specific gravity (2.73), granite does so in the porosity (45.5%), schist does so in the gravel content (20.0 wt.%) and cohesion (38.1 kPa), and phyllite does so in the silt/clay content (54.4 wt.%), clay mineral content (30.1 wt.%), and friction angle ($38.2^{\circ}$). With regard to the physical and mechanical properties by component, fault gouge was shown to have lower values than cataclasite and damage zones in all factors other than porosity and silt/clay contents.