• Title/Summary/Keyword: Photovoltaic system, PV system

Search Result 971, Processing Time 0.025 seconds

Economic Analysis on a PV System in an Apartment Complex (공동주택 태양광발전 시스템의 경제성 평가)

  • Kim, Jin-Hyung
    • Journal of Climate Change Research
    • /
    • v.1 no.2
    • /
    • pp.163-177
    • /
    • 2010
  • This study analyzes the economies of photovoltaic systems in an apartment complex of 1,185 households, in cases of feed-in tariff and subsidy for solar home program of the government. When including the revenue only from electricity sales, NPVs of subsidy and that of feed-in tariff are -560 million KRW and -87 million KRW respectively. With the avoided social cost included without the revenues from CERs, NPVs of subsidy and feed-in tariff are -556 million KRW and -84 million KRW respectively. With the revenues from CERs, NPV of subsidy is -526 million KRW and NPV of feed-in tariff is -54 million KRW. As results of sensitivity analysis based on the changes in capital costs and discount rates, while all scenarios with subsidy including the revenues from CERs are not commercially viable, all scenarios with feed-in tariff exclusive of the revenues from CERs are commercially viable when discount rate is less than 7.2% or capital cost is less than 6,840 thousand KRW/kW. In the cases that include the avoided social cost, while all scenarios with subsidy including the avoided social cost as well as the revenues from CERs are not commercially viable, all scenarios with feed-in tariff are commercially viable without the revenues from CERs when discount rate is less than 7.2% or capital cost is less than 6,856 thousand KRW/KW. The results indicate that the changes in discount rates do not influence the revenues from CERs, but the revenues from electricity sale. Considering that the number of apartment complex and the positive environmental and social benefits from PV system, government needs to promote its diffusion.

A Study on the Method to Evaluate Minimum Capacity of Energy Storage System(ESS) for Micro Grid(MG) Design (확률론적 방법론을 이용한 마이크로그리드(MG)의 에너지 저장장치(ESS) 최소 필요용량 및 투자시점 결정방법)

  • Lee, Jae-Gul;Shin, Jeong-Hoon;Nam, Su-Chul;Baek, Sung-Muk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.8
    • /
    • pp.40-47
    • /
    • 2010
  • In this paper, we propose a probability method to determine minimum capacity of energy storage system(ESS) for Micro Grid(MG). Because of high capital cost of ESS, it's very important to determine optimal capacity of ESS and for stable operation of MG and we should determine minimum capacity of ESS. The proposed method has abilities to consider forced outage rate of generators and intermittent of non-dispatchable generators and minimum capacity make MG keep energy balancing by oneself.

Analysis of Photovoltaic Potential of Unused Space to Utilize Abandoned Stone Quarry (폐채석장 부지 활용을 위한 유휴 공간의 태양광 발전 잠재량 분석)

  • Kim, Hanjin;Ku, Jiyoon;Park, Hyeong-Dong
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.534-548
    • /
    • 2021
  • In this paper, the feasibility of generating solar power near an abandoned quarry is examined with the objectives of resolving the essential problems that quarries encounter, such as rockfalls and space usage issues. On an abandoned quarry site in Sadang, Seoul, Republic of Korea, two different PV installation methods were analyzed. The first is attaching PV directly on the quarry slope. Since there are no corresponding safety standards and precedents for installing solar panels directly on slopes, the power generation potential was calculated by using topographic data and reasonable assumptions. The surface area of cut slope section was extracted from the Digital Elevation Model(DEM) via ArcGIS and Python programming to calculate the tilt and power capacity of installable panels. The other approach is installing PV as a rockfall barrier, and the power generation potential was analyzed with the assumption that the panel is installed in the direction of facing solar irradiation. For the derivation of power generation, the renewable energy generation analysis program SAM(System Advisor Model) was used for both methods. According to the result, quarries that have terminated resource extraction and remain devastated have the potential to be transformed into renewable energy generation sites.

Optimization Process Models of Gas Combined Cycle CHP Using Renewable Energy Hybrid System in Industrial Complex (산업단지 내 CHP Hybrid System 최적화 모델에 관한 연구)

  • Oh, Kwang Min;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.28 no.3
    • /
    • pp.65-79
    • /
    • 2019
  • The study attempted to estimate the optimal facility capacity by combining renewable energy sources that can be connected with gas CHP in industrial complexes. In particular, we reviewed industrial complexes subject to energy use plan from 2013 to 2016. Although the regional designation was excluded, Sejong industrial complex, which has a fuel usage of 38 thousand TOE annually and a high heat density of $92.6Gcal/km^2{\cdot}h$, was selected for research. And we analyzed the optimal operation model of CHP Hybrid System linking fuel cell and photovoltaic power generation using HOMER Pro, a renewable energy hybrid system economic analysis program. In addition, in order to improve the reliability of the research by analyzing not only the heat demand but also the heat demand patterns for the dominant sectors in the thermal energy, the main supply energy source of CHP, the economic benefits were added to compare the relative benefits. As a result, the total indirect heat demand of Sejong industrial complex under construction was 378,282 Gcal per year, of which paper industry accounted for 77.7%, which is 293,754 Gcal per year. For the entire industrial complex indirect heat demand, a single CHP has an optimal capacity of 30,000 kW. In this case, CHP shares 275,707 Gcal and 72.8% of heat production, while peak load boiler PLB shares 103,240 Gcal and 27.2%. In the CHP, fuel cell, and photovoltaic combinations, the optimum capacity is 30,000 kW, 5,000 kW, and 1,980 kW, respectively. At this time, CHP shared 275,940 Gcal, 72.8%, fuel cell 12,390 Gcal, 3.3%, and PLB 90,620 Gcal, 23.9%. The CHP capacity was not reduced because an uneconomical alternative was found that required excessive operation of the PLB for insufficient heat production resulting from the CHP capacity reduction. On the other hand, in terms of indirect heat demand for the paper industry, which is the dominant industry, the optimal capacity of CHP, fuel cell, and photovoltaic combination is 25,000 kW, 5,000 kW, and 2,000 kW. The heat production was analyzed to be CHP 225,053 Gcal, 76.5%, fuel cell 11,215 Gcal, 3.8%, PLB 58,012 Gcal, 19.7%. However, the economic analysis results of the current electricity market and gas market confirm that the return on investment is impossible. However, we confirmed that the CHP Hybrid System, which combines CHP, fuel cell, and solar power, can improve management conditions of about KRW 9.3 billion annually for a single CHP system.

Determination of the Strength Characteristics of c-Si Solar Cells using Partially Processed Solar Cells (부분공정 태양전지를 이용한 결정질 태양전지의 강도 특성에 관한 연구)

  • Choi, Su Yeol;Lim, Jong Rok
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.5
    • /
    • pp.35-45
    • /
    • 2020
  • Photovoltaic (PV) power system prices have been steadily dropping in recent years due to their mass production and advances in relevant technology. Crystalline silicon (c-Si wafers) account for the largest share of the price of solar cells; reducing the thickness of these wafers is an essential part of increasing the price competitiveness of PV power systems. However, reducing the thickness of c-Si wafers is challenging; typically, phenomena such as bowing and cracking are encountered. While several approaches to address the bowing phenomenon of the c-Si solar cells exist, the only method to study the crack phenomenon (related to the strength of the c-Si solar cells) is the bending test method. Moreover, studies on determining the strength properties of the solar cells have focused largely on c-Si wafers, while those on the strength properties of front and rear-side electrodes and SiNx, the other components of c-Si solar cells, are scarce. In this study, we analyzed the strength characteristics of each layer of c-Si solar cells. The strength characteristics of the sawing mark direction produced during the production of c-Si wafers were also tested. Experiments were conducted using a 4bending tester for a specially manufactured c-Si solar cell. The results indicate that the back side electrode is the main component that experienced bowing, while the front electrode was the primary component regulating the strength of the c-Si solar cell.

A New Photovoltaic System Architecture of Module-Integrated Converter with a Single-sourced Asymmetric Multilevel Inverter Using a Cost-effective Single-ended Pre-regulator

  • Manoharan, Mohana Sundar;Ahmed, Ashraf;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.222-231
    • /
    • 2017
  • In this paper, a new architecture for a cost-effective power conditioning systems (PCS) using a single-sourced asymmetric cascaded H-bridge multilevel inverter (MLI) for photovoltaic (PV) applications is proposed. The asymmetric MLI topology has a reduced number of parts compared to the symmetrical type for the same number of voltage level. However, the modulation index threshold related to the drop in the number of levels of the inverter output is higher than that of the symmetrical MLI. This problem results in a modulation index limitation which is relatively higher than that of the symmetrical MLI. Hence, an extra voltage pre-regulator becomes a necessary component in the PCS under a wide operating bias variation. In addition to pre-stage voltage regulation for the constant MLI dc-links, another auxiliary pre-regulator should provide isolation and voltage balance among the multiple H-bridge cells in the asymmetrical MLI as well as the symmetrical ones. The proposed PCS uses a single-ended DC-DC converter topology with a coupled inductor and charge-pump circuit to satisfy all of the aforementioned requirements. Since the proposed integrated-type voltage pre-regulator circuit uses only a single MOSFET switch and a single magnetic component, the size and cost of the PCS is an optimal trade-off. In addition, the voltage balance between the separate H-bridge cells is automatically maintained by the number of turns in the coupled inductor transformer regardless of the duty cycle, which eliminates the need for an extra voltage regulator for the auxiliary H-bridge in MLIs. The voltage balance is also maintained under the discontinuous conduction mode (DCM). Thus, the PCS is also operational during light load conditions. The proposed architecture can apply the module-integrated converter (MIC) concept to perform distributed MPPT. The proposed architecture is analyzed and verified for a 7-level asymmetric MLI, using simulation results and a hardware implementation.

A study on Optimal Operation of Protection Coordination Devices Evaluation System in Distribution System with Distributed Sources (분산전원이 연계된 배전계통에 보호협조기기 평가시스템의 최적운용에 관한 연구)

  • Ji, Sungho;Song, Bangwoon;Kim, Byungki;Rho, Daeseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.2971-2978
    • /
    • 2013
  • Recently, with the world-wide issues about global warming and CO2 reduction, a number of distributed generations(DGs) such as photovoltaic(PV) and wind power(WP), are interconnected with the distribution systems. However, DGs can change the direction of the power flow from one-direction to bi-direction, and also change the direction and amount of fault current of existing distribution systems. Therefore, it may cause the critical problems on the power quality and protection coordination. This paper proposes an operation algorithm for bi-directional protection coordination using and apply it for the evaluation system for protection coordination. From the simulation results It is found that the proposed method is more effective and convenient than existing method.

Impacts of green technologies in distribution power network

  • Suwanapingkarl, Pasist;Singhasathein, Arnon;Phanthuna, Nattaphong;Boonthienthong, Manat;Srivallop, Kwanchanok;Ketken, Wannipa
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.1
    • /
    • pp.90-100
    • /
    • 2015
  • Green technologies such as renewable energy resources, Electric Vehicles and Plug-in Hybrid Electric Vehicles (EVs/PHEVs), electric locomotives, etc. are continually increasing at the existing power network especially distribution levels, which are Medium Voltage (MV) and Low Voltage (LV). It can be noted that the increasing level of green technologies is driven by the reduction emission policies of carbon dioxide ($CO_2$). The green technologies can affect the quality of power, and hence its impacts of are analysed. In practical, the environment such as wind, solar irradiation, temperature etc. are uncontrollable, and therefore the output power of renewable energy in that area can be varied. Moreover, the technology of the EVs/PHEVs is still developed in order to improve the performance of supply and driving systems. This means that these developed can cause harmonic distortion as the control system is mostly used power electronics. Therefore, this paper aims to analyse the voltage variation and harmonic distortion in distribution power network in urban area in Europe due to the combination between wind turbine, hydro turbine, photovoltaic (PV) system and EVs/PHEVs. More realistic penetration levels of SSDGs and EVs/PHEVs as forecasted for 2020 is used to analyse. The dynamic load demands are also taken into account. In order to ensure the accurate of simulation results, the practical parameters of distribution system are used and the international standards such as Institute of Electrical and Electronics Engineers (IEEE) standards are also complied. The suggestion solutions are also presented. The MATLAB/Simulink software is chosen as it can support complicate modelling and analysis.

Energy Balance and Constraints for the Initial Sizing of a Solar Powered Aircraft (태양광 추진 항공기의 초기 사이징을 위한 에너지 균형 및 구속조건 연구)

  • Hwang, Ho-Yon;Nam, Tae-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.6
    • /
    • pp.523-535
    • /
    • 2012
  • Solar powered aircraft are becoming more and more interesting for future long endurance missions at hight altitudes, because they could provide surveillance, earth monitoring, telecommunications, etc. without any atmospheric pollution and hopefully in the near future with competitive costs compared with satellites. However, traditional aircraft sizing methods currently employed in the conceptual design phase are not immediately applicable to solar powered aircraft. Hence, energy balance and constraint analyses were performed to determine how various power system components effect the sizing of a solar powered long endurance aircraft. The primary power system components considered in this study were photovoltaic (PV) modules for power generation and regenerative fuel cells for energy storage. To verify current research results, these new sizing methods were applied to HALE aircraft and results were presented.

Change of Amount of Power and Utilization Rate for Photo-Voltaic System (태양광 발전 시스템의 발전량 및 이용률 변화)

  • Mi-Yong Hwang;Soon-Hyung Lee;Yong-Sung Choi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.403-407
    • /
    • 2023
  • In this paper, in order to investigate the efficiency of solar power generation system operation, we have studied operation cases such as generation amount, utilization rate, and generation time, and the following conclusions were obtained. The amount of power generation in 2017 was 1,311.48 MWh, and the amount of power generation in 2018 was 1,226.03 MWh. In 2021, 1,184.28 MWh was generated, and 90.30% compared to 2017, and the amount of power generation decreased by 1.94% every year. The deterioration of photovoltaic modules could be seen as one cause of the decrease in power generation. 1,977.74 MWh was generated in the spring, and 1,621.77 MWh was generated in the summer. In addition, 1,478.87 MWh was generated in the fall, and 1,110.55 MWh was generated in the winter, showing a lot of power generation in the order of spring, summer, fall, and winter. From 2017 to 2022, the seasonal utilization rate, daily power generation time, and daily power generation were investigated, and it could be seen that the spring utilization rate varies from 19.29% to 16.99%. It could be seen that the daily generation time in winter decreased from 2.67 hours to 2.13 hours, and in spring it generated longer than spring from 4.63 hours to 4.08 hours. In addition, the daily power generation in winter also decreased from 2.67 MWh to 2.13 MWh, and in spring it decreased from 4.63 MWh to 4.08 MWh, but it could be seen that it is more than in winter.