• Title/Summary/Keyword: Photovoltaic system, PV system

Search Result 971, Processing Time 0.027 seconds

A Feasibility Study for a Stratospheric Long-endurance Hybrid Unmanned Aerial Vehicle using a Regenerative Fuel Cell System

  • Cho, Seong-Hyun;Cha, Moon-Yong;Kim, Minjin;Sohn, Young-Jun;Yang, Tae-Hyun;Lee, Won-Yong
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.41-51
    • /
    • 2016
  • In the stratosphere, the air is stable and a photovoltaic (PV) system can produce more solar energy compared to in the atmosphere. If unmanned aerial vehicles (UAVs) fly in the stratosphere, the flight stability and efficiency of the mission are improved. On the other hand, the weakened lift force of the UAV due to the rarefied atmosphere can require more power for lift according to the weight and/or wing area of the UAV. To solve this problem, it is necessary to minimize the weight of the aircraft and improve the performance of the power system. A regenerative fuel cell (RFC) consisting of a fuel cell (FC) and water electrolysis (WE) combined PV power system has been investigated as a good alterative because of its higher specific energy. The WE system produces hydrogen and oxygen, providing extra energy beyond the energy generated by the PV system in the daytime, and then saves the gases in tanks. The FC system supplies the required power to the UAV at night, so the additional fuel supply to the UAV is not needed anymore. The specific energy of RFC systems is higher than that of Li-ion battery systems, so they have less weight than batteries that supply the same energy to the UAV. In this paper, for a stratospheric long-endurance hybrid UAV based on an RFC system, three major design factors (UAV weight, wing area and performance of WE) affecting the ability of long-term flight were determined and a simulation-based feasibility study was performed. The effects of the three design factors were analyzed as the flight time increased, and acceptable values of the factors for long endurance were found. As a result, the long-endurance of the target UAV was possible when the values were under 350 kg, above 150 m2 and under 80 kWh/kg H2.

Economics Analysis of Photovoltaic Power Generation Linked with Green Roof in Consideration of Seoul Solar Map-based RPS (서울시 햇빛지도 기반의 RPS제도를 고려한 옥상녹화 연계 태양광발전 시스템의 경제성 분석)

  • Kim, Tae-Han;Lee, So-Dam;Park, Jeong-Hyeon
    • KIEAE Journal
    • /
    • v.17 no.1
    • /
    • pp.77-82
    • /
    • 2017
  • In power supply systems for urban areas, issues such as a progressive tax have escalated recently. In this regard, photovoltaic power generation, which is appraised as an alternative power generation system, is drawing attention increasingly for its high stability and applicability to existing infrastructure. This study assessed the realistic feasibility of photovoltaic power generation and also analyzed the economic benefits expected when it is linked with green roof, which is likely to promote ecological functions in urban areas, based on the Seoul solar map, RPS, and actual monitoring data. The economics analysis of 30kW photovoltaic power generation applied with the monthly average horizontal solar radiation of six grades in the Seoul solar map showed that positive NPV was up to grade 4, while grade 5 or poorer showed negative NPV and indicated that it is difficult to assure appropriate feasibility. Compared with non-afforestation, when green roof was applied, monthly average power improvement efficiency was 7.2% at highest and 3.7% at lowest based on yearly actual monitoring data. The annual average was 5.3%, and the efficiency was high relatively in summer, including September and November. As for the economic benefits expected when 30kw photovoltaic power generation is combined with green roof based on the average horizontal solar radiation of grade 1 in the Seoul solar map, SP has improved 0.2 years to 7.4 years, and EP has improved 0.5 years to 8.3 years.

A Study on the Eco-Tecnique of EcoCenter - Focused on the Building Material and Solar System - (에코센터의 생태건축기술에 관한 연구 - 건축재료와 태양에너지활용시스템을 중심으로 -)

  • Choi, Young-Ho;Shim, Woo-Gab
    • KIEAE Journal
    • /
    • v.4 no.2
    • /
    • pp.65-72
    • /
    • 2004
  • Ecological architecture enables people to recycle and reuse architectural resources within the category of ecosystem and also to minimize the effect on environment in a whole process, including architectural planning, usage and exhaustion to use sustainable energies. Rammed earth wall construction method utilized in EcoCenter located in Crystalwaters ecological village in Austrailia is a good example, which maximizes its advantages and also covers its limits to use soil and wood as structural resources. In a case of wood, they used non-treated timber to minimize environmental load and utilized used materials in openings. In the roofs, aluminum coated steel which is plated with zinc collects rain effectively even though it is not regenerable. Nontoxic finishes and insulation in floor and ceiling with used papers are able to minimize its environmental load. Solar energy system applied in EcoCenter enables them to market extra energy with electricity companies as well as support needs of its own buildings to utilize photovoltaic panel system with PV panels. Passive solar system is planned effectively in heating and cooling to apply regenerative walls in a use of rammed earth wall construction and natural ventilation systems through openings.

A Study on the Charge Controller for Solar Street Lamp by Direct Duty Ratio Control (다이렉트 듀티비 제어에 의한 태양광 가로등용 충전제어기에 관한 연구)

  • Jang, Han-Gi;Lim, Jung-Yeol
    • Journal of IKEEE
    • /
    • v.19 no.1
    • /
    • pp.118-123
    • /
    • 2015
  • According to the recent report, solar street lamp connected to a non Maximum Power Point Tracking(MPPT) charger, can lead to a system-wide decline in power output with as much as 30%. This paper proposes the charge controller with direct duty ration control for 250W solar street lamp in order to improve the efficiency of photovoltaic from these output power reduction. This paper covers the Pulse Width Modulation(PWM) controller and power conversion topology and analyze the MPPT method for charge controller. The power conversion part consists of push pull converter based on PWM controller using 8bit MCU in order to have lower manufacturing cost. The PWM controller with direct duty ratio control algorithm is constantly tracking the maximum power point of photovoltaic module and increases energy output power. The test results shows 97.1~97.4% MPPT efficiency and the experimental hardware is implemented based on the solar simulator condition for 241W. Thus, the implemented charge controller shows its feasibility for the real application, especially under solar street lamp.

Economic Evaluation of Unused Space PV System Using the RETScreen Model - A Case Study of Busan, Gangseo-gu - (RETScreen 기반 유휴공간 태양광 발전 시스템의 경제성 평가 연구 - 부산시 강서구 사례를 중심으로 -)

  • Kang, Seongmin;Jeon, Youngjae;Cho, Sung Heum;Lee, Daekyeom;Jeon, Eui-Chan
    • Journal of Climate Change Research
    • /
    • v.8 no.1
    • /
    • pp.21-30
    • /
    • 2017
  • Recently, There has been much discussed about unused space. This space can be used in a variety of ways. Utilizing it as a facility, craft shop, and utilizing renewable energy generation facilities. Especially, in terms of climate change should be supplied renewable energy. Renewable energy needs to be developed in terms of responding to climate change, and the recent Paris agreement is also emphasizing the importance of renewable energy. In particular, renewable energy needs to be widely disseminated. And renewable energy is limited space. In this regard, idle land can provide opportunities for securing new renewable energy generation facilities. The introduction of new and renewable energy facilities in idle space can enhance the self-sufficiency rate of the local community, which is significant in terms of responding to climate. In this study, to investigate the possibility of utilizing a unused space for a photovoltaic power generation facility, we investigated the amount of electricity which could be generated through photovoltaic power generation, and the economic effects, using a RETScreen model. The results showed that 9,738 MWh of power can be generated and that $4,540tCO_2eqcan$ be saved. Regarding the economic effect, the net present value of the facility was shown to be 2,247,389,020 KRW. As the net present value was shown to be positive, we believe that the installation of a photovoltaic power generation facility in an unused space would have a positive economic effect. We found the net present value following the fluctuation of the SMP price to be positive, though there was some variation. However, as the economic efficiency was shown to be low because the net present value in relation to the maintenance costs was negative, we believe that maintenance costs must be taken fully into account when evaluating economic efficiency. In particular, as subsidies can be used to cover maintenance costs which must be factored into photovoltaic power generation, we believe that photovoltaic power generation can have an economic effect. Because spaces not currently in use can have a positive economic effect as renewable energy power generation facilities, and can also contribute to the reduction of greenhouse gas emissions, unused spaces are thought to greatly help local governments to cope with climate change as well as reinforcing their related capabilities. We believe our study will help local governments with decisions relating to unused real estate utilization in the future.

Analysis of New Solar Cell Model for the Virtual Implemented Solar Cell System (가상구현 태양전지 시스템을 위한 태양전지의 새로운 모델링)

  • Jeong, Byung-Hwan;Kang, Byoung-Hee;Lee, Myung-Un;Choe, Gyu-Ha
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.79-89
    • /
    • 2006
  • Particularly the photovoltaic systems are preferred because the output is extracted to the useful electric energy. However, the output characteristics of photovoltaic(PV) systems using solar cell or array depend on the weather conditions. The assistant equipment which emulates the solar cell characteristics that can be controlled arbitrarily by researcher is required to the researchers for reliable experimental data. To solve these problems, it is necessary to research a solar cell model of which output characteristics varied by setting the weather conditions such as insolation levels and temperatures. Therefore, this paper was presented that improved model which is based on interpolation model. To verified the improved model, it is confirmed using the simulation of MATLAB. Also, the experiment was performed by the characteristics of virtual implemented solar cell(VISC) system with the proposed solar cell model. It could be confirmed that there exists actual ewer within 5% between actual solar cell and VISC system.

Integral Design and Structural Analysis for Safety Assessment of Domestic Specialized Agrivoltaic Smart Farm System (한국형 영농형 태양광 스마트팜 시스템의 종합설계 및 구조해석을 통한 안전성 검토)

  • Lee, Sang-ik;Kim, Dong-su;Kim, Taejin;Jeong, Young-joon;Lee, Jong-hyuk;Son, Younghwan;Choi, Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.4
    • /
    • pp.21-30
    • /
    • 2022
  • Renewable energy systems aim to achieve carbon neutrality and replace fossil fuels. Photovoltaic technologies are the most widely used renewable energy. However, they require a large operating area, thereby decreasing available farmland. Accordingly, agrivoltaic systems (AVSs)-innovative smart farm technologies that utilize solar energy for crop growth and electricity production-are attracting attention. Although several empirical studies on these systems have been conducted, comprehensive research on their design is lacking, and no standard model suitable for South Korea has been developed. Therefore, this study created an integral design of AVS reflecting domestic crop cultivation conditions and conducted a structural analysis for safety assessment. The shading ratio, planting distance, and agricultural machinery work of the system were determined. In addition, national construction standards were applied to evaluate their structural safety using a finite element analysis. Through this, the safety of this system was ensured, and structural considerations were put forward. It is expected that the AVS model will allow for a stable utilization of renewable energy and smart farm technologies in rural areas.

Wind and solar energy: a comparison of costs and environmental impacts

  • Carnevale, Ennio A.;Lombardi, Lidia;Zanchi, Laura
    • Advances in Energy Research
    • /
    • v.4 no.2
    • /
    • pp.121-146
    • /
    • 2016
  • This study is concerned with the analysis of two renewable technologies for electric energy production: wind energy and photovoltaic energy. The two technologies were assessed and compared by economic point of view, by using selected indicators characterized by a clear calculation approach, requirement of information easy to be collected, clear, but even complete, interpretation of results. The used economic indicators are Levelized Cost of Energy, $CO_2$ abatement cost and fossil fuel saving specific cost; these last two specifically aimed at evaluating the different capabilities that renewable technologies have to cut down direct $CO_2$ emissions and to avoid fossil fuel extraction. The two technologies were compared also from the environmental point of view by applying Life Cycle Assessment approach and using the environmental impact categories from the Eco-indicator'95 method. The economic analysis was developed by taking into account different energy system sizes and different geographic areas in order to compare different European conditions (Italy, Germany and Denmark) in term of renewable resource availability and market trend. The environmental analysis was developed comparing two particular types of PV and wind plants, respectively residential and micro-wind turbine, located in Italy. According to the three calculated economic indicators, the wind energy emerged as more favorable than PV energy. From the environmental point of view, both the technologies are able to provide savings for almost all the considered environmental impact categories. The proposed approach, based on the use of economic and environmental indicators may be useful in supporting the policies and the decision making procedures concerned with the promotion and use of renewables, in reference to the specific geographic, economic and temporal conditions.

A Study on the New Maximum Power Point Tracking and Current Ripple Reduction of Solar Cell for the Grid-connected PV Inverter (계통연계형 태양광 인버터의 새로운 최대 전력점 추종과 태양전지의 전류리플 감소에 관한 연구)

  • Hwang, Uiseon;Kang, Moonsung;Yang, Oh
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.5
    • /
    • pp.1187-1195
    • /
    • 2013
  • Photovoltaic inverters should always track the maximum power of solar cell arrays in operation. Also, they should be irrespective of the maximum power point voltage of a wide range of solar cells in tracking the maximum power point. If the current ripple of solar cells occurs, the function of maximum power point tracking drops, and normal tracking is difficult when solar radiation or the maximum power point changes. To solve this problem, this paper proposed a new maximum power point tracking algorithm with high efficiency and an algorithm to reduce the current ripple of solar cells. According to the results from the test on 4KW grid-connected PV inverter, the efficiency of maximum power point tracking and inverter output and the total harmonic distortion of inverter output current showed 99.97%, 97.5% and 1.05% respectively. So, the inverter showed excellent performance, and made possible stable maximum power point tracking operation when the solar radiation rapidly changed from 100% to 10% and from 10% to 100% for 0.5 seconds.

Development of Protection Method for Power System interconnected with Distributed Generation using Distance Relay

  • Kim, Ji-Soo;Cho, Gyu-Jung;Song, Jin-Sol;Shin, Jae-Yun;Kim, Dong-Hyun;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2196-2202
    • /
    • 2018
  • The conventional power system allowed only downstream power flow. Therefore, even if a fault occurs, only the forward current flow is considered. However, with the interest in distributed generation (DG), DGs such as Photovoltaic (PV), Wind Turbine (WT) are being connected to a power system. DGs have many advantages, but they also have disadvantage such as generation of reverse flow. Reverse flow can severely disrupt existing protection systems that only consider downstream power flow. The major problems that may arise from reverse power flow are blinding protection and sympathetic tripping. In order to solve such problems, the methods of installing a directional relay or a fault current limiter is proposed. However, this method is inconceivable because of the economics shortage. Therefore, in this paper, a distance relay installed in existing power system is used to solve the protection problem. Modeling of distance relay has been carried out using ElectroMagnetic Transients Program (EMTP), and it has been verified through simulations that the above problems can be solved by a distance relay.