• Title/Summary/Keyword: Photovoltaic system, PV system

Search Result 971, Processing Time 0.029 seconds

Field Test Study of Photovoltaic Generation System for Medium and Small-Sized Buildings (중소형 건물 태양광발전시스템의 실증 연구)

  • Kim, Eung-Sang;Kim, Seul-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.561-565
    • /
    • 2006
  • The paper presents a method of assessing the adequate tapaclty of photovoltaic generation systems for public buildings based on analysis of load variation patterns of customers. When PV systems are installed for supplying power for the customer load, reverse power relay is required by the guideline to be installed at the point of common coupling with the power network. The suggested method analyzes daily, weekly and monthly load demand of the customer that Irishes PV system installation, and determines the appropriate rating of the PV system for preventing PV generation from exceeding the customer demand. This work is expected to support renewable energy dissemination projects of public organizations.

  • PDF

Research and Experimental Implementation of a CV-FOINC Algorithm Using MPPT for PV Power System

  • Arulmurugan, R.;Venkatesan, T.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1389-1399
    • /
    • 2015
  • This research suggests maximum power point tracking (MPPT) for the solar photovoltaic (PV) power scheme using a new constant voltage (CV) fractional order incremental conductance (FOINC) algorithm. The PV panel has low transformation efficiency and power output of PV panel depends on the change in weather conditions. Possible extracting power can be raised to a battery load utilizing a MPPT algorithm. Among all the MPPT strategies, the incremental conductance (INC) algorithm is mostly employed due to easy implementation, less fluctuations and faster tracking, which is not only has the merits of INC, fractional order can deliver a dynamic mathematical modelling to define non-linear physiognomies. CV-FOINC variation as dynamic variable is exploited to regulate the PV power toward the peak operating point. For a lesser scale photovoltaic conversion scheme, the suggested technique is validated by simulation with dissimilar operating conditions. Contributions are made in numerous aspects of the entire system, including new control algorithm design, system simulation, converter design, programming into simulation environment and experimental setup. The results confirm that the small tracking period and practicality in tracking of photovoltaic array.

Performance Analysis of Anti-islanding Function for Grid-connected PV Inverter Systems under Parallel Connections (병렬운전하는 계통연계형 태양광 발전용 인버터의 단독운전 검출 성능 분석)

  • Jung, Young-Seok;Yu, Byung-Gyu;Kang, Gi-Hwa
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.5
    • /
    • pp.34-40
    • /
    • 2013
  • Islanding phenomenon of photovoltaic system is undesirable because it leads to a safety hazard to utility service personnel and may cause damage to power generation and power supply facilities as a result of unsynchronized re-closure. Anti-islanding protection is an important technical requirement for grid-connected PV system. Until now, various anti-islanding methods for detecting and preventing islanding of photovoltaic and other distributed generations have been proposed. Most of them are focusing on the anti-islanding performance of single PV system according to the related international and domestic standard test procedures. There are few studies on the islanding phenomenon for multiple photovoltaic operation in parallel. This paper presents performance analysis of anti-islanding function for grid-connected PV inverter systems when several PV inverters are connected in parallel.

MPPT Strategy to Improve Photovoltaic Power Generation Efficiency in Partial Shadows (부분 음영에서의 태양광 발전 효율을 높이기 위한 MPPT 전략)

  • Heo, Cheol-Young;Kim, Yong-Rae;Lee, Young-Kwoun;Lee, Dong-Yun;Choy, Ick;Choi, Ju-Yeop
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.2
    • /
    • pp.1-9
    • /
    • 2019
  • In order to increase the power generation efficiency of the photovoltaic system, a new algorithm that can follow the maximum power point of the photovoltaic power generation system having nonlinear output characteristics is proposed. Conventional maximum power point tracking (MPPT) algorithms such as Perturbation and Observation (P&O) and InCond (Increment and Conductance) schemes can not find the global maximum power point at a plurality of pole points in the unmatched state of unbalanced PV modules. However, even if the global maximum power point is found at a plurality of pole points, the global maximum power that can not be the real maximum power by the photovoltaic generation system. In order to solve this problem, a few PV companies propose installing several small PV inverters instead of if big one. However, since this will require additional costs, we herein propose a Multi-MPPT system using individual 3-point MPPT to track true MPPT at a plurality of pole points in the unmatched state of unbalanced PV modules.

Assessment on Power Quality of Grid-Connected PV System Based on Incremental Conductance MPPT Control (증분컨덕턴스 MPPT제어 기반 계통연계형 태양광발전시스템의 전력품질 평가)

  • Seol, Jae-Woong;Jang, Jae-Jung;Kim, Dong-Min;Lee, Seung-Hyuk;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.8-13
    • /
    • 2007
  • During the last years, there has been an increased interest in the new energy such as photovoltaic(PV) system from the viewpoint of environmental pollution. In this regard, this paper estimates the power quality of grid-connected PV system. As the maximum power operating point(MPOP) of photovoltaic(PV) power systems alters with changing atmospheric conditions, the efficiency of maximum power point tracking(MPPT) is important in PV power systems. Moreover, grid-connected PV system occurs some problems such as voltage inequality and harmonics. Therefore, this paper presents the results of a grid-connected PV system modeling that contains incremental conductance MPPT controller by PSCAD/EMTDC simulator and investigates the influence that can occur in the grid-connected PV system from aspect of power quality, i.e. voltage drop, total harmonic distortion(TDD) and total demand distortion(TDD). For the case study, the measured data of the PV way in Cheongwadae, Seoul, Korea is used.

A Variable Step Size Incremental Conductance MPPT of a Photovoltaic System Using DC-DC Converter with Direct Control Scheme

  • Cho, Jae-Hoon;Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.9
    • /
    • pp.74-82
    • /
    • 2013
  • This paper presents a novel maximum power point tracking for a photovoltaic power (PV) system with a direct control plan. Maximum power point tracking (MPPT) must usually be integrated with photovoltaic (PV) power systems so that the photovoltaic arrays are able to deliver maximum available power. The maximum available power is tracked using specialized algorithms such as Perturb and Observe (P&O) and incremental Conductance (indCond) methods. The proposed method has the direct control of the MPPT algorithm to change the duty cycle of a dc-dc converter. The main difference of the proposed system to existing MPPT systems includes elimination of the proportional-integral control loop and investigation of the effect of simplifying the control circuit. The proposed method thus has not only faster dynamic performance but also high tracking accuracy. Without a conventional controller, this method can control the dc-dc converter. A simulation model and the direct control of MPPT algorithm for the PV power system are developed by Matlab/Simulink, SimPowerSystems and Matlab/Stateflow.

A Study on Application of a Heat Recovery Ventilator using Photovoltaic System in School (학교 교실의 태양광발전 환기시스템 적용성 연구)

  • Jang, Yong-Sung;Suh, Seung-Jik;Hong, Sung-Hee;Yu, Kwon-Jong;Park, Hyu-Soon
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.1
    • /
    • pp.27-34
    • /
    • 2005
  • This study aims to evaluate application of a heat recovery ventilator(HRV) using photovoltaic(PV) system. To this end, we analyzed performance of a PV system, which it was evaluated by monthly power wattage and conversion efficiency according to design capacity of a HRV. The results of this study can be summarized as follows. (1) A conversion efficiency of the PCS was evaluated about 86% in rated power. (2) A maximum, minimum and average output power were respectively analyzed 49.2W, 47.3W, and 48.8W. (3) Total power wattage of 200W PV system was 211kW and it was 316kW in case of 300W PV system. (4) Insufficient electrical power of a duct and window type ventilation system was respectively calculated 133.5kW and 147.7kW.

A Study on the Fabrication and Characteristics of Snow Removal PV Module & System using Heating Film (발열 필름을 이용한 제설 기능 PV module & system 제작 및 특성평가)

  • Park, Eun Bee;Cho, Geun Yuoung;Cho, Sung Bae;Kim, Hyun Jun;Yu, Jeong Jae;Park, Chi Hong
    • Current Photovoltaic Research
    • /
    • v.4 no.4
    • /
    • pp.159-163
    • /
    • 2016
  • Piled snow upon PV module interferes with Photoelectric Effect process through photovoltaic directly. As a result of this phenomenon, its generation efficiencies keep decreasing or are stuck at zero power generating status. In addition, PV facilities have been installed on those places such as water surface, roof-top, and other isolated places, dealing with conditions of "Securing high REC weighted value", "Difficulty of securing land" and so forth. Through this study, we are able to actualize the function of heating over PV modules when it snows. We adopted laminating method through heating film and modules, guaranteeing warranty more than for 25 years. Also we are trying remote control systemically, not by hardware control, to run parallel with automatic driving and monitoring system which enable to control operation time, insolation, amount of snowfall automatically. We applied analysis of actual proof to both snow removal PV system and general PV power system, and these led to bear power consumption analysis while snow-removing, and its comparison after finishing the task as "One stone, two birds." In the long run, we could carry out economic analysis against snow removal system, and this helps to verify the most maximized control method for snow removal conditons on a basis of weather information. this study shall let prevent people from negligent accidents, and improve power generation problems as mentioned from the top. Ultimately, we expect to apply this system to heavy snowfall regions in winter season in spite of its limited system installaion in Korean territory, initially.

Evaluation on Calculation Algorithms for Polycrystalline Silicon PV Module Surface Temperatures by Varying External Factors during the Summer Period (다결정 실리콘 PV모듈의 하절기 표면온도 예측을 위한 알고리즘 검토 및 외부인자별 영향 평가)

  • Jung, Dong-Eun;Yeom, Gyuhwan;Lee, Chanuk;Do, Sung-Lok
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.8
    • /
    • pp.177-184
    • /
    • 2019
  • Recently, electric power usages and peak loads from buildings are increasing due to higher outdoor air temperatures and/or abnormal climate during the summer period. As one of the eco-friendly measures, a renewable energy system has been received much attention. Particularly, interest on a photovoltaic (PV) system using solar energy has been rapidly increasing in a building sector due to its broad applicability. In using the PV system, one of important factors is the PV efficiency. The normal PV efficiency is determined based on the STC(Standard Test Condition) and the NOCT(Nominal Operating Cell Temperature) performance test. However, the actual PV efficiency is affected by the temperature change at the module surface. Especially, higher module temperatures generally reduce the PV efficiency, and it leads to less power generation from the PV system. Therefore, the analysis of the relation between the module temperature and PV efficiency is required to evaluate the PV performance during the summer period. This study investigates existing algorithms for calculating module surface temperatures and analyzes resultant errors with the algorithms by comparing the measured module temperatures.

A Study on Performance Analysis of 3kW Grid-Connected PV Systems (3kW급 계통연계형 태양광발전시스템의 성능특성 비교분석에 관한 연구)

  • So, Jung-Hun;Choi, Ju-Yeop;Yu, Gwon-Jong;Jung, Young-Seok;Choi, Jae-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.2
    • /
    • pp.9-15
    • /
    • 2004
  • 3kW grid connected PV(photovoltaic) systems have been constructed for evaluating and analyzing performance of PV system at FDTC(field demonstration test center) in Korea, PV systems installed in FDTC have been operating and monitored since November 2002. As climatic and irradiation conditions have been varied through long-term field test, data acquisition system has been constructed for measuring performance of PV system to observe the overall effect of environmental conditions on their operation characteristics. The performance of PV systems has been evaluated and analyzed for component perspective(PV array and power conditioning system) and global perspective(system efficiency, capacity factor, and electrical power energy) by field test. By the results, it is very important to develop optimal design technology of grid connected PV system.