• Title/Summary/Keyword: Photovoltaic generator system

Search Result 108, Processing Time 0.058 seconds

A Modified Perturb and Observe Sliding Mode Maximum Power Point Tracking Method for Photovoltaic System uUnder Partially Shaded Conditions

  • Hahm, Jehun;Kim, Euntai;Lee, Heejin;Yoon, Changyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.281-292
    • /
    • 2016
  • The proposed scheme is based on the modified perturb and observe (P&O) algorithm combined with the sliding mode technique. A modified P&O algorithm based sliding mode controller is developed to study the effects of partial shade, temperature, and insolation on the performance of maximum power point tracking (MPPT) used in photovoltaic (PV) systems. Under partially shaded conditions and temperature, the energy conversion efficiency of a PV array is very low, leading to significant power losses. Consequently, increasing efficiency by means of MPPT is particularly important. Conventional techniques are easy to implement but produce oscillations at MPP. The proposed method is applied to a model to simulate the performance of the PV system for solar energy usage, which is compared to the conventional methods under non-uniform insolation improving the PV system utilization efficiency and allowing optimization of the system performance. The modified perturb and observe sliding mode controller successfully overcomes the issues presented by non-uniform conditions and tracks the global MPP. Compared to MPPT techniques, the proposed technique is more efficient; it produces less oscillation at MPP in the steady state, and provides more precise tracking.

Dynamic Analysis and Controller Design for Standalone Operation of Photovoltaic Power Conditioners with Energy Storage

  • Park, Sun-Jae;Shin, Jong-Hyun;Park, Joung-Hu;Jeon, Hee-Jong
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2004-2012
    • /
    • 2014
  • Energy storage devices are necessary to obtain stable utilization of renewable energy sources. When black-out occurs, distributed renewable power sources with energy storage devices can operate under standalone mode as uninterruptable power supply. This paper proposes a dynamic response analysis with small-signal modeling for the standalone operation of a photovoltaic power generation system that includes a bidirectional charger/discharger with a battery. Furthermore, it proposes a DC-link voltage controller design of the entire power conditioning system, using the storage current under standalone operation. The purpose of this controller is to guarantee the stable operation of the renewable source and the storage subsystem, with the power conversion of a very efficient bypass-type PCS. This paper presents the operating principle and design guidelines of the proposed scheme, along with performance analysis and simulation. Finally, a hardware prototype of 1-kW power conditioning system with an energy storage device is implemented, for experimental verification of the proposed converter system.

Analysis on the Operation Characteristic of the Combined Electric Power Generation System by Photovoltaic and Wind Energy with Power Storage Apparatu (동력저장장치를 이용한 풍력$\cdot$태양광 복합발전시스템의 특성분석)

  • Lim Jung-Yeol;Lee Jung-Il;Jung Hak-Su;Cha In-Su
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.58-62
    • /
    • 2001
  • Photovoltaic and wind power generation have an advantage of unlimited and unpolluted amount of energy resource. In conventional wind generation systems, since the blade rotates at low speed when the velocity of wind decreases their operations are possible only under limited conditions. Therefore they are in trouble of self-generation without the help of auxiliary generation devices outside. The system driven by the wind force in this paper consists of a generator, an invertor, batteries and sets for power storage with a spring. In this paper, the operation characteristics of system were analyzed through experiments for a trial product.

  • PDF

Power control of Photovoltaic Generator System Using Quasi Z-Source Inverter (QZSI를 사용한 태양광 발전시스템의 전력제어)

  • Kim, J.Y.;Chun, T.W.;Lee, H.H.;Kim, H.G.;Nho, E.C.
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.246-247
    • /
    • 2010
  • This paper proposed a method for controlling the active power of a single-phase grid-connected photovoltaic(PV) system by the quasi-Z-source inverter (QZSI). The MPPT of PV array is achieved by adjusting a shoot-through time of QZSI. The PI+R controller is used for reducing the steady-state error of the grid current. The simulation studies are carried out to verify the performances of proposed system.

  • PDF

Economic Analysis on PV/Diesel Power System for Remote Islands' Electrification (도서용 태양광/내연기관 발전시스템 경제성 비교 분석)

  • Lee, M.G.;Jeong, M.W.;Jin, Y.T.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.147-151
    • /
    • 1998
  • Several PV-diesel hybrid systems were built in isolated islands in Korea, where they are far from the inland to be supplied the electric power to a utility level from it. A lot of efforts has been concentrated to find a cost-effective electric supply system with higher reliability and minimum maintenance when compared with a diesel generator. For this purpose, an autonomous PV-diesel hybrid system with multi-channel remote monitoring system was investigated to supply electric power under minimum operating cost and maintenance in a small isolated island. In this report, the economic analysis was performed for comparison with photovoltaic system and diesel generator by computer simulation. And it was proven that a PV system is more cost-effective than an internal combustion engine for the remote island with less than 150 households. Especially, in the case of islands with less than 50 households, the initial construction cost of the PV system is comparable to and its operating cost is about 70% less than the diesel generator.

  • PDF

Demonstration study of desalination system with renewable energy (신재생에너지를 이용한 해수담수시스템 실증 연구)

  • Joo, Hong-Jin;Hwang, In-Seon;Joo, Moon-Chang;Kwak, Hee-Youl
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.197.1-197.1
    • /
    • 2010
  • This study was carried out to evaluate the operating performances of the evaporation desalination system with solar energy. This system was designed to use evacuated solar collector as the heat source, supplying the required heat energy and photovoltaic power as the electric source, supplying required power to pumps in the desalination system. The 5kW photovoltaic power generation system to make the electricity, the single-stage fresh water generator with plate heat exchanger, and remote control and monitoring system. Solar desalination system was designed and installed in Jeju-island, Korea in 2006, after about 4 years of operation, usability and stability of solar desalination system was guaranteed. The system comprises of the desalination unit which was designed to have daily fresh water capacity of $2m^3$, a $120m^2$ evacuated tubular solar collector to supply the heat, a $6m^3$ heat storage tank, and a 5.2kW photovoltaic power generation to supply the electricity to hydraulic pumps for the heat medium fluids. On a clear day, average daily solar irradiance in Jeju-island was measured to be $500W/m^2$ and the daily fresh water yield showed to be more than 500 liters under this condition. After around three years of a long term operation of the system from January 2007 to August 2009, average daily freshwater yield was analyzed to be around $330{\ell}$. The relationship equation between solar irradiance and freshwater yield was found to be y=1.1806x - 107.89.

  • PDF

A Design of Gate Driver Circuits in DMPPT Control for Photovoltaic System (태양광 분산형 최대전력점 추적 제어를 위한 고전압 게이트 드라이버 설계)

  • Kim, Min-Ki;Lim, Shin-Il
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.3
    • /
    • pp.25-30
    • /
    • 2014
  • This paper describes the design of gate driver circuits in distributed maximum power point tracking(DMPPT) controller for photovoltaic system. For the effective DMPPT control in the existence of shadowed modules, high voltage gate driver is applied to drive the DC-DC converter in each module. Some analog blocks such as 12-b ADC, PLL, and gate driver are integrated in the SoC for DMPPT. To reduce the power consumption and to avoid the high voltage damage, a short pulse generator is added in the high side level shifter. The circuit was implemented with BCDMOS 0.35um technology and can support the maximum current of 2A and the maximum voltage of 50V.

A Stable Black-Start Strategy for a Stand-Alone DC Micro-Grid

  • Cha, Jae-Hun;Han, Yoon-Tak;Park, Kyung-Won;Oh, Jin-Hong;Choi, Tae-Seong;Ko, Jae-Hun;MAHIRANE, Philemon;An, Jae-Yun;Kim, Jae-Eon
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.30-37
    • /
    • 2018
  • Unlike an AC system, a DC system does not cause problems with synchronization, stability, reactive power, system losses, and cost. However, more research is still required for the application of DC Systems. This paper proposes a stable black-start strategy for a stand-alone DC micro-grid, which consists of an energy storage system, photovoltaic generator, wind-turbine generator, diesel generator, and DC loads. The proposed method is very important for avoiding inrush current and transient overvoltage in the power system equipment during restoration after a blackout. PSCAD/EMTDC software was used to simulate, analyze, and verify the method, which was found to be stable and applicable for a stand-alone DC micro-grid.

A Basic Study on the Probabilistic Reliability Evaluation of Power System Considering Solar/Photovoltaic Cell Generator (태양광발전원을 고려한 전력계통의 신뢰도평가에 관한 기초연구)

  • Park, Jeong-Je;Wu, Liang;Choi, Jae-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.19-21
    • /
    • 2008
  • Renewable energy resources such as wind, wave, solar, micro hydro, tidal and biomass etc. are becoming importance stage by stage because of considering effect of the environment. Solar energy is one of the most successful sources of renewable energy for the production of electrical energy following wind energy. And, the solar/photovoltaic cell generators can not make two-state model as conventional generators, but should be modeled as multi-state model due to solar radiation random variation. The method of obtaining reliability evaluation index of solar cell generators is different from the conventional generators. This paper presents a basic study on reliability evaluation of power system considering solar cell generators with multi-states.

  • PDF

A Study on Probabilistic Reliability Evaluation of Power System Considering Solar Cell Generators (태양광발전원(太陽光發電原)을 고려한 전력계통(電力系統)의 확률논적(確率論的)인 신뢰도(信賴度) 평가(評價)에 관한 연구(硏究))

  • Park, Jeong-Je;Liang, Wu;Choi, Jae-Seok;Cha, Jun-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.486-495
    • /
    • 2009
  • This paper proposes a new methodology on reliability evaluation of a power system including solar cell generators (SCG). The SCGs using renewable energy resource such as solar radiation(SR) should be modeled as multi-state operational model because the uncertainty of the resource supply may occur an effect as same as the forced outage of generator in viewpoint of adequacy reliability of system. While a two-state model is well suited for modeling conventional generators, a multi-state model is needed to model the SCGs due to the random variation of solar radiation. This makes the method of calculating reliability evaluation indices of the SCG different from the conventional generator. After identifying the typical pattern of the SR probability distribution function(pdf) from SR actual data, this paper describes modelling, methodology and details process for reliability evaluation of the solar cell generators integrated with power system. Two test results indicate the viability of the proposed method.