• 제목/요약/키워드: Photovoltaic efficiency

검색결과 1,182건 처리시간 0.027초

태양전지 셀의 열화와 직렬저항의 변화에 따른 태양전지 모듈의 특성 해석 (The performance analysis of photovoltaic module accounting for solar cell degradation and series resistance)

  • 박지홍;강기환;화이티루 로렌스;안형근;유권종;한득영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.28-29
    • /
    • 2006
  • When photovoltaic module is used for a long time, its performance decreases due to several reasons. In this paper, we focus on the possibilities mainly contributing to the degraded efficiency of the polycrystalline silicon photovoltaic modules. The analysis is based on the modules that have been used for 15 years. These are two main reasons that cause the efficiency degradation, the corrosion and thermal decomposition. The former phenomenon of electrode is mainly due to the moisture from damaged back sheet in some module. However the other reason of the degraded efficiency comes from the thermal decomposition, which can not be observed from the outside but only by experiment. In this study, the comparison between the efficiency of normal modules and degradation modules is presented. Module having degraded cell was seen to cause increase of series resistance by about 80%, in comparison to normal samples efficiency which reduce by about 20%. This study shows that the effects of series resistances on module performance are critical. These effects must be understood and taken into consideration when analyzing performance degradation.

  • PDF

박막의 조성비율에 따른 유기태양전지의 효율성 연구 (A Study about the Efficiency of Organic Photovoltaic Device as a function of the Material Concentration)

  • 김승주;이동근;박재형;공수철;김원기;류상욱
    • 반도체디스플레이기술학회지
    • /
    • 제8권3호
    • /
    • pp.1-5
    • /
    • 2009
  • In this study, we have shown the power conversion efficiency of organic thin film photovoltaic devices utilizing a conjugated polymer/fullerene bulk-hetero junction structure. We use MDMO-PPV(Poly[2-methoxy-5-(3,7-dimethyloctyloxy -1,4-phenylenevinylene) as an electron donor, PCBM([6,6]-Phenyl C61 butyric acid methyl ester) as an electron accepter, and PEDOT:PSS used as a HTL(Hole Transport Layer). We have fabricated OPV(Organic Photovoltaic) devices as a function of the MDMO-PPV/PCBM concentration from 1:1 to 1:5. The electrical characteristics of the fabricated devices were investigated by means of I-V, P-V, F·F(Fill Factor) and PCE(power conversion efficiency). The power conversion efficiency was gradually increased until 1:4 ratio, also the highest efficiency of 0.4996% was obtained at the ratio.

  • PDF

Wavelength Conversion Lanthanide(III)-cored Complex for Highly Efficient Dye-sensitized Solar Cells

  • Oh, Jung-Hwan;Song, Hae-Min;Eom, Yu-Kyung;Ryu, Jung-Ho;Ju, Myung-Jong;Kim, Hwan-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권8호
    • /
    • pp.2743-2750
    • /
    • 2011
  • Lanthanide(III)-cored complex as a wavelength conversion material has been successfully designed and synthesized for highly efficient dye-sensitized solar cells, for the first time, since light with a short wavelength has not been effectively used for generating electric power owing to the limited absorption of these DSSCs in the UV region. A black dye (BD) was chosen and used as a sensitizer, because BD has a relatively weak light absorption at shorter wavelengths. The overall conversion efficiency of the BD/WCM device was remarkably increased, even with the relatively small amount of WCM added to the device. The enhancement in $V_{oc}$ by WCM, like DCA, could be correlated with the suppression of electron recombination between the injected electrons and $I_3{^-}$ ions. Furthermore, the short-circuit current density was significantly increased by WCM with a strong UV light-harvesting effect. The energy transfer from the Eu(III)-cored complex to the $TiO_2$ film occurred via the dye, so the number of electrons injected into the $TiO_2$ surface increased, i.e., the short-circuit current density was increased. As a result, BD/WCM-sensitized solar cells exhibit superior device performance with the enhanced conversion efficiency by a factor of 1.22 under AM 1.5 sunlight: The photovoltaic performance of the BD/WCM-based DSSC exhibited remarkably high values, $J_{sc}$ of 17.72 mA/$cm^2$, $V_{oc}$ of 720 mV, and a conversion efficiency of 9.28% at 100 mW $cm^{-2}$, compared to a standard DSSC with $J_{sc}$ of 15.53 mA/$cm^2$, $V_{oc}$ of 689 mV, and a conversion efficiency of 7.58% at 100 mW $cm^{-2}$. Therefore, the Eu(III)-cored complex is a promising candidate as a new wavelength conversion coadsorbent for highly efficient dye-sensitized solar cells to improve UV light harvesting through energy transfer processes. The abstract should be a single paragraph which summaries the content of the article.

태양광발전 에너지이용시스템의 계측과 평가에 관한 연구 (A Study on the Instrumentation and Valuation of Photovoltaic Energy Utilization System)

  • 정현상;백형래;조금배;김동휘;김대곤;유권종
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 하계학술대회 논문집
    • /
    • pp.496-499
    • /
    • 1991
  • Photovoltaic system has very low energy conversion efficiency and the output characteristics of solar cell is varied by the Insolation quantity and the temperature. In order to improve the efficiency of photovoltaic system, the energy which has got from solar cell must be use maximum. In this paper, it was stimultaneous executed both MPPT control and instrumentation in order that the operating point of solar cell is located maximum power point, using the PWM inverter and micro-computer, which is for the purpose of acquiring maximum power from the solar cell. As a result, maximum power point tracking had carried out and the efficiency of photovoltaic system improved, even if insolation quantity and the temperature are varied.

  • PDF

High-Efficiency Power Conditioning System for Grid-Connected Photovoltaic Modules

  • Choi, Woo-Young;Choi, Jae-Yeon
    • Journal of Power Electronics
    • /
    • 제11권4호
    • /
    • pp.561-567
    • /
    • 2011
  • This paper presents a high-efficiency power conditioning system (PCS) for grid-connected photovoltaic (PV) modules. The proposed PCS consists of a step-up DC-DC converter and a single-phase DC-AC inverter for the grid-connected PV modules. A soft-switching step-up DC-DC converter is proposed to generate a high DC-link voltage from the low PV module voltage with a high-efficiency. A DC-link voltage controller is presented for constant DC-link voltage regulation. A half-bridge inverter is used for the single-phase DC-AC inverter for grid connection. A grid current controller is suggested to supply PV electrical power to the power grid with a unity power factor. Experimental results are obtained from a 180 W grid-connected PV module system using the proposed PCS. The proposed PCS achieves a high power efficiency of 93.0 % with an unity power factor for a 60 Hz / 120 Vrms AC power grid.

추적식 수상 태양광 발전 시스템 성능 분석 (The Efficiency Analysis of Tracking-Type Floating PV System)

  • 양연원;정선옥;신현우;이길송
    • Current Photovoltaic Research
    • /
    • 제1권2호
    • /
    • pp.122-125
    • /
    • 2013
  • The Floating Photovoltaic System was installed on the surface of water. There were some researches in this subject. But there was not many studies with experiment on a high waterproof Floating Photovoltaic modules. The aim of this study was to analyze the performance of the Floating Photovoltaic System. For this experiment, a high waterproof Floating Photovoltaic modules were designed and applied to the module capacity of 10 kW Tracking-Type structure. The experiment results indicated the performance of the daily production is 51.6 kW; the production capacity of Floating Photovoltaic System is expected to be 23% higher than that of the ground-mounted photovoltaic system.

태양 열 전기 복합생산 PVT Water and PVT Air 모듈의 실험적 성능비교 연구 (An Experimental Comparison Study of PVT Water and PVT Air Modules for Heat and Power Co-Generation)

  • 이광섭;앤드류;강은철;이의준
    • 설비공학논문집
    • /
    • 제26권12호
    • /
    • pp.559-564
    • /
    • 2014
  • The development of photovoltaic-thermal (PVT) technology has been introduced in recent years specifically to increase PV efficiency. One of the characteristics of PV systems is that the electricity generation increases as the solar radiation increases whereas the efficiency decreases because of high surface temperatures. Using a photovoltaic-thermal system, the surface temperature can be decreased by capturing the excess heat and the efficiency can be increased due to these characteristics. In this paper, three cases are introduced : 1) PV_r as the reference case, 2) PVT_a, which uses air as a heat source, and 3) PVT_w, which uses water as a heat source. Experiments were performed, analyzed, and compared to examine the effect of the PVT type on the efficiency of the system. The results showed that ETC($%/^{\circ}C$) efficiency of the PVT cases was increased versus the reference case due to decreasing surface temperature. Total efficiencies, which are electrical efficiency and thermal efficiency, for each PVT are tested and found to be 12.22% for PV_r, 29.50% for PVT_a, and 68.74% for PVT_w.

태양광 발전 시스템을 위한 부스트 컨버터의 회로 구성에 따른 직류측 스위치 손실 분석 (DC Link Switch Loss Analyses according to Circuit Structures of the Boost Converter for Photovoltaic Generation System)

  • 이승요
    • 전기학회논문지P
    • /
    • 제61권4호
    • /
    • pp.192-198
    • /
    • 2012
  • Switch losses directly affect the efficiency of power conversion systems and those have big differences according to the power consumed by load systems and the structures of power conversion circuits. In this paper, analyses for switch losses in DC link converter are performed based on the circuit structures of the DC/DC converter in photovoltaic generation system whose output power is varied according to the amount of solar radiation, temperature and partial shade on the solar modules. Boost converter is adopted as a DC link converter topology of the photovoltaic generation system and the loss analyses for the switches used in the boost converters are performed according to the circuit structures. Analyses like the things performed in this paper will be a prerequisite to designing the photovoltaic generation system whose output power is changed according to the environmental variations.

추적식과 고정식의 태양광발전시스템의 운전효율분석 (The operating efficiency Analysis of PV System Using Tracking and Fixed Method)

  • 박정국;김지훈;김대곤;서진연;김동휘;조금배;백형래
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2005년도 전력전자학술대회 논문집
    • /
    • pp.68-70
    • /
    • 2005
  • The arrangement technique of solar cell and module is accomplished quickly with development of power semiconduc-tors. It reached to a practical cost linearly. Photovoltaic power system increases constantly. There are 3kWtracking photovoltaic system and fixed photovoltaic system in Chosun University. This paper compares operating characteristics of the fixed photovoltaic system and the tracking photovoltaic system with shows the efficiency.

  • PDF

유연기판을 이용한 고효율 나노결정질 실리콘 박막 태양전지 제조 (Fabrication of Highly Efficient Nanocrystalline Silicon Thin-Film Solar Cells Using Flexible Substrates)

  • 장은석;김솔지;이지은;안승규;박주형;조준식
    • Current Photovoltaic Research
    • /
    • 제2권3호
    • /
    • pp.103-109
    • /
    • 2014
  • Highly efficient hydrogenated nanocrystalline silicon (nc-Si:H) thin-film solar cells were prepared on flexible stainless steel substrates using plasma-enhanced chemical vapor deposition. To enhance the performance of solar cells, material properties of back reflectors, n-doped seed layers and wide bandgap nc-SiC:H window layers were optimized. The light scattering efficiency of Ag back reflectors was improved by increasing the surface roughness of the films deposited at elevated substrate temperatures. Using the n-doped seed layers with high crystallinity, the initial crystal growth of intrinsic nc-Si:H absorber layers was improved, resulting in the elimination of the defect-dense amorphous regions at the n/i interfaces. The nc-SiC:H window layers with high bandgap over 2.2 eV were deposited under high hydrogen dilution conditions. The vertical current flow of the films was enhanced by the formation of Si nanocrystallites in the amorphous SiC:H matrix. Under optimized conditions, a high conversion efficiency of 9.13% ($V_{oc}=0.52$, $J_{sc}=25.45mA/cm^2$, FF = 0.69) was achieved for the flexible nc-Si:H thin-film solar cells.