• 제목/요약/키워드: Photovoltaic device

검색결과 373건 처리시간 0.026초

CuPc: $F_4$-TCNQ 정공 수송층이 도입된 P-i-n형 유기 박막 태양전지의 성능 특성 연구 (Performance Characteristics of p-i-n Type Organic Thin-film Photovoltaic Cell with CuPc: $F_4$-TCNQ Hole Transport Layer)

  • 박소현;강학수;나타라잔센틸루마르;박대원;최영선
    • 폴리머
    • /
    • 제33권3호
    • /
    • pp.191-197
    • /
    • 2009
  • 박막형 유기 태양전지의 성능 향상을 위하여 정공 수송층인 CuPc 층에 강한 p형 유기 반도체인 $F_4$-TCNQ을 도핑하여 ITO/PEDOT:PSS/CuPc: $F_4$-TCNQ(5wt%)/CuPc:C60 (blending ratio 1 : 1)/C60/BCP/LiF/Al의 이종 접합 구조를 가지는 P-i-n형 유기 박막형 태양전지 소자를 진공증착 장비를 이용하여 제조한 후, 유기 태양전지의 전류 밀도-전압(J-V) 특성, 단락 전류($J_{sc}$), 개방 전압($V_{oc}$), 충진 인자(fill factor: FF), 에너지 전환 효율(${\eta}_e$) 등을 측정하고 계산하여 성능 굉가를 수행하였다. CuPc 층에 $F_4$-TCNQ을 도핑함으로써 에너지 흡수 스펙트럼에서 흡수강도가 증가하였으며, $F_4$-TCNQ가 도핑된 CuPc 박막에서 $F_4$-TCNQ 유기 분자의 분산성 향상, 박막의 표면 균일성, 주입 전류(injection currents) 향상 효과등에 의해서 제조된 p-i-n형 유기 박막 태양전지의 성능이 향상되는 것으로 확인되었다. 제조된 유기 태양전지의 에너지 전환 효율(${\eta}_e$)은 0.15%로 실리콘 태양전지와 비교해서 아직도 성능 향상을 위한 많은 노력이 필요함을 보여 준다.

태양광 발전의 최근 업계 동향 (Recent trends in photovoltaic industries)

  • 이수홍;조은철;김동섭;조영현;민요셉
    • 한국결정성장학회지
    • /
    • 제7권1호
    • /
    • pp.93-107
    • /
    • 1997
  • 태양전지를 이용한 태양광 발전은 조용하고 안전하게 무한한 에너지원인 태양에너지를 이용하여 전기에너지를 얻는 청정에너지 발생법이다. 1995년 태양전지의 출하량은 약 84.8 MW로, 매년 20% 이상의 시장성장이 예상된다. 본 논문에서는 태양광 발전의 원리, 특징, 종류, 주변기자재 등을 조사하였고, 최신의 태양전지 업계의 동향을 살펴보았다.

  • PDF

단일 센서를 사용한 태양광 Module Integrated Converter의 최대전력점 추종 기법 (A Novel MPPT using Single Sensor for Photovoltaic Module Integrated Converter)

  • 지용혁;김영호;정두용;이수원;원충연
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2009년도 추계학술대회 논문집
    • /
    • pp.263-266
    • /
    • 2009
  • In the photovoltaic applications, MPPT(maximum power point tracking) method is essential due to the non-lineality of photovoltaic output characteristics. To ensure stable tracking response, two sensors are required in conventional popular MPPTs. In modularized PV system as an AC module system, the cost of a sensor can have an effect on entire system cost because a power conditioning device is connected in a PV module. Because only a current sensor is required for proposed MPPT, it is helpful in the cost reduction point of view. In this paper, a novel MPPT using current sensor is proposed In the proposed MPPT, the voltage is derived from sensed current value. The proposed method is verified by simulation results.

  • PDF

Carbon nanomaterials in organic photovoltaic cells

  • Kim, Tae-Hoon;Yang, Seung-Jae;Park, Chong-Rae
    • Carbon letters
    • /
    • 제12권4호
    • /
    • pp.194-206
    • /
    • 2011
  • Carbon nanomaterials in organic photovoltaic (OPV) cells have attracted a great deal of interest for the development of high-efficiency, flexible, and low-cost solar cells. Due to the complicated structure of OPV devices, the electrical properties and dispersion behavior of the carbon nanomaterials should be controlled carefully in order for them to be used as materials in OPV devices. In this paper, a fundamental theory of the electrical properties and dispersion behavior of carbon nanomaterials is reviewed. Based on this review, a state-of-the-art OPV device composed of carbon nanomaterials, along with issues related to such devices, are discussed.

편광 흡수성 광기전성 고분자 박막 연구 (Polarizing Photovoltaic Polymer Films for Reflective Solar-LCDs)

  • 김영찬;허윤호;박병주
    • 한국전기전자재료학회논문지
    • /
    • 제25권7호
    • /
    • pp.525-530
    • /
    • 2012
  • We present the results of a study of the polarizing photovoltaic (PV) effects in an aligned polymer bulk heterojuction PV layer. The fairly uniform in-plane uniaxial alignment of the PV layer with a macroscopic axial orientational order parameter of 0.40 was achieved by means of a simple rubbing technique. Moreover, reflective polarizing PSCs having the aligned PV layers were applied to power-generating reflective type liquid crystal displays (LCDs), which exhibited a maximum contrast ratio of 1.7. These results form a promising foundation for various energy harvesting polarization dependent opto-electrical LCD device applications.

Power Control modeling and Simulation of Hybrid Power System for Building Microgrid Connected Application

  • Yoon, Gi-Cap;Cho, Jae-Hoon;Hong, Won-Pyo
    • 조명전기설비학회논문지
    • /
    • 제23권11호
    • /
    • pp.84-93
    • /
    • 2009
  • In this paper, we propose to study the possibility of using a photovoltaic system combined with a high speed micro-turbine. This hybrid system can work as stand-alone system or grid connected system as it will be a part of a micro-grid. Initially, we propose Matlab/Simulink dynamic models of photovoltaic, micro turbine systems and supercapacitor. Then, we carry out a simulation comparison of the two systems, this is, with supercapacitor and without supercapacitor bank. We show that supercapacitor bank as short-term storage device was necessary to reduce the fast fluctuation of power in the case of sensitive loads. It is verified the simulation results of Matlab/Simulink based hybrid power system represent the effectiveness of the suggested hybrid power system.

Optical Simulation of Transparent Electrode for Application to Organic Photovoltaic Cells

  • 조세희;양정도;박동희;위창환;최원국
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.440-440
    • /
    • 2012
  • The optical characteristics of transparent electrode with various kind of materials and thickness to be used for organic photovoltaic cells were studied by simulation methodology. It demonstrated that the transmittance varies with the kinds of materials, the number of layers and change in the thickness of each layer. In the case of the structure composed of dielectric/Ag/dielectric, optimized transmittance was higher than 90% at 550 nm and the thickness of the Ag layer was ~10nm. Top and bottom dielectric materials can be changed with different refractive index and extinction coefficient. The relation between the optical transmittance of device and transparent electrode with different refractive indices was discussed as well. By processing numerical simulations, an optimized optical transmittance can be obtained by tunning the thickness and materials of transparent electrode.

  • PDF

태양광발전시설 무인 유지보수 로봇 개발 (Development of Unmanned Cleaning Robot for Photovoltaic Panels)

  • 이현규;이상순
    • 반도체디스플레이기술학회지
    • /
    • 제18권3호
    • /
    • pp.144-149
    • /
    • 2019
  • This paper describes the results of a study on the unmanned maintenance robot that simultaneously performs the cleaning and inspection of the photovoltaic panels. The robot has a special adsorptive device, an infrared sensor, a vacuum level sensor and a camera. The robot uses two SSC (Sliding Suction Cup) adsorptive devices to move up and down the slope. First, the forces generated when the robot moves up the slope are mechanically analyzed, and the required design and control of the adsorption system are suggested. The robot was designed and manufactured to operate stably by using the presented results. Next, the normal force between the panel and the wheel was measured to confirm that the robot was manufactured and operated as intended, and the robot motion was tested on the inclined panel. It has been proven that robots are well designed and built to clean and inspect sloped panels.

Fabrication and characterization of perovskite CH3NH3Pb1-xSbxI3-3xBr3x photovoltaic devices

  • Yamanouchi, Jun;Oku, Takeo;Ohishi, Yuya;Fukaya, Misaki;Ueoka, Naoki;Tanaka, Hiroki;Suzuki, Atsushi
    • Advances in materials Research
    • /
    • 제7권1호
    • /
    • pp.73-81
    • /
    • 2018
  • $TiO_2/CH_3NH_3Pb_{1-x}Sb_xI_{3-3x}Br_{3x}-based$ photovoltaic devices were fabricated by a spin-coating method using mixture solutions with $SbBr_3$. Effects of $SbBr3$, CsI or RbBr addition to $CH_3NH_3PbI_3$ precursor solutions on the photovoltaic properties where investigated. The short-circuit current densities and photoconversion efficiencies were improved by adding a small amount of $SbBr_3$, CsI or RbBr to the perovskite phase, which would be due to the doping effect of Sb, Br and Cs/Rb atom at the Pb, I and $CH_3NH3$ sites, respectively.

Properties of Photovoltaic Cell using ZnPc/C60 Double Layer Devices

  • Lee, Ho-Sik;Seo, Dae-Shik;Lee, Won-Jae;Jang, Kyung-Uk;Kim, Tae-Wan;Lee, Sung-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • 제6권3호
    • /
    • pp.124-127
    • /
    • 2005
  • It has been a long time since organic solar cells were expected as a low-cost energy-conversion device. Although practical use of them has not been achieved, technological progress continues. Morphology of the materials, organic/inorganic interface, metal cathodes, molecular packing and structural properties of the donor and acceptor layers are essential for photovoltaic response. We have fabricated solar cell devices based on zinc-phthalocyanine(ZnPc) as donor(D) and fullerene$(C_60)$ as electron acceptor(A) with doped charge transport layers, and BCP and $Alq_3$ as an exciton blocking layer(EBL). We have measured the photovoltaic characteristics of the solar cell devices using the Xe lamp as a light source. We were use of $Alq_3$ layer leads to external power conversion efficiency was $2.65\%$ at illumination intensity $100\;mW/cm^2$. Also we confirmed the optimum thickness ratio of the DA hetero-junction is about 1:2.