• 제목/요약/키워드: Photovoltaic System (PV system)

검색결과 971건 처리시간 0.024초

Performance Ratio of Crystalline Si and Triple Junction a-Si Thin Film Photovoltaic Modules for the Application to BIPVs

  • Cha, Hae-Lim;Ko, Jae-Woo;Lim, Jong-Rok;Kim, David-Kwangsoon;Ahn, Hyung-Keun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권1호
    • /
    • pp.30-34
    • /
    • 2017
  • The building integrated photovoltaic system (BIPV) attracts attention with regard to the future of the photovoltaic (PV) industry. It is because one of the promising national and civilian projects in the country. Since land area is limited, there is considerable interest in BIPV systems with a variety of angles and shapes of PV panels. It is therefore expected to be one of the major fields for the PV industry in the future. Since the irradiation is different from each installation angle, the output can be predicted by the angles. This is critical for a PV system to be operated at maximum power and use an efficient design. The development characteristics of tilted angles based on data results obtained via long-term monitoring need to be analyzed. The ratio of the theoretically available and actual outputs is compared with the installation angles of each PV module to provide a suitable PV system for the user.

A BIFUNCTIONAL UTILITY CONNECTED PHOTOVOLTAIC SYSTEM WITH POWER FACTOR CORRECTION AND U.P.S. FACILITY

  • Kim. S.;Yoo, Gwonjong;Song, Jinsoo
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1996년도 창립기념 전력전자학술발표회 논문집
    • /
    • pp.103-108
    • /
    • 1996
  • In this paper, a novel utility connected photovoltaic power generation system with unity power factor and uninterruptable power system facility and its control strategy are proposed. The proposed photovoltaic(PV) system is connected in parallel between utility and load. The PV system provides an uninterruptable voltage to load, a maximum power tracking to solar array, and power factor correction to the utility. The proposed system has the following advantages compared with the conventional utility connected PV system. 1. Harmonic elimination Function 2. Feeding the photovoltaic energy to the utility 3. Providing the uninterruptible power source along battery to the load In case that the photovoltaic array system is on the poor power generation, the battery and capacitor of the PV system are charged by three phase utility source and the inverter in the PV system only provides the reactive current to eliminate the harmonic current exited on the utility. In the normal operation mode, the PV system supplies active power to load and reactive power to utility in order to maintain the unity power factor and to regulate ac load voltage.

  • PDF

독립형 태양광 조명 시스템의 설계 및 성능 평가 연구 (A study on the design and performance of a stand-alone photovoltaic lighting system)

  • 권오상;서유진;허창수
    • 한국태양에너지학회 논문집
    • /
    • 제24권4호
    • /
    • pp.1-10
    • /
    • 2004
  • In view of global environmental problems and resource exhaustion, we must develop new energy resources that are abundant and provide substitutes for fossil fuels. Renewable energies, such as solar, are ideal because they are clean, inexhaustible, and available everywhere in the world. Photovoltaic(PV) system, in general, are operated as a stand-alone, grid-tied, or hybrid system. Many of the stand-alone PV systems are installed. Although the pre-installation cost of PV system is high, it poorly has been operated due to the absence of optimal management standards. Therefore a study on the performance of PV system is important for the system design and maintenance. In this paper a photovoltaic lighting system was resigned according to load consumption. Then a PV lighting system which used electrodeless lamp as a load was installed. In order to investigate the system operating characteristics we've added a monitoring system to the PV lighting system. The monitoring system using the LabVIEW program regularly checks the operation of the PV lighting system and records the system data. According to the system data, the stability and availability of the PV lighting system were evaluated.

해석모델을 이용한 태양광모듈의 성능결과 비교분석 (Comparison Results of Photovoltaic Module Performance using Simulation Model)

  • 소정훈;유병규;황혜미;유권종
    • 한국태양에너지학회 논문집
    • /
    • 제28권4호
    • /
    • pp.56-61
    • /
    • 2008
  • The modeling of PV (Photovoltaic) module is useful to perform detailed analysis of PV system performance for changing meteorological conditions, verify actual rated power of PV system sizing and determine the optimal design of PV system and components. This paper indicates a modeling approach of PV module performance in terms of meteorological conditions and identifies validity of this modeling method by comparing measured with simulated value of various PV modules using simulation model.

태양전지모듈 고장 진단 알고리즘을 적용한 모니터링시스템 (The Monitoring System with PV Module-level Fault Diagnosis Algorithm)

  • 고석환;소정훈;황혜미;주영철;송형준;신우균;강기환;최정내;강인철
    • 한국태양에너지학회 논문집
    • /
    • 제38권3호
    • /
    • pp.21-28
    • /
    • 2018
  • The objects of PV (Photovoltaic) monitoring system is to reduce the loss of system and operation and maintenance costs. In case of PV plants with configured of centralized inverter type, only 1 PV module might be caused a large loss in the PV plant. For this reason, the monitoring technology of PV module-level that find out the location of the fault module and reduce the system losses is interested. In this paper, a fault diagnosis algorithm are proposed using thermal and electrical characteristics of PV modules under failure. In addition, the monitoring system applied with proposed algorithm was constructed. The wireless sensor using LoRa chip was designed to be able to connect with IoT device in the future. The characteristics of PV module by shading is not failure but it is treated as a temporary failure. In the monitoring system, it is possible to diagnose whether or not failure of bypass diode inside the junction box. The fault diagnosis algorithm are developed on considering a situation such as communication error of wireless sensor and empirical performance evaluation are currently conducting.

PV모듈 모델링에 의한 성능모의 결과비교 (Performance Simulation Results for Photovoltaic Module Modeling)

  • 소정훈;유병규;황혜미;유권종;최주엽
    • 전기학회논문지
    • /
    • 제57권11호
    • /
    • pp.1988-1993
    • /
    • 2008
  • Photovoltaic (PV) modules operate over a large range of conditions but manufacturer's information is not sufficient to determine their overall performance. Designers need a reliable tool to predict energy production from a photovoltaic module under all conditions in order to make a sound decision. The modeling method of photovoltaic (PV) module are useful to perform detailed analysis of PV system performance for changing meteorological conditions, verify actual rated power of PV system sizing and determine the optimal design of PV system and components. This paper indicates a modeling approach of PV module performance in terms of meteorological conditions and identifies validity of PV modules modeling by comparing measured with simulated value.

50kW급 계통연계형 태양광발전시스템의 성능모니터링 결과 및 평가분석 (Performance Monitoring Results, Evaluation and Analysis of 50kW Grid-Connected PV System)

  • 소정훈;유병규;황혜미;유권종;최주엽
    • 한국태양에너지학회 논문집
    • /
    • 제27권2호
    • /
    • pp.29-35
    • /
    • 2007
  • Monitoring system is constructed for evaluating and analyzing performance of installed 50kW grid-connected PV system and have been monitored since October 2005. As climatic and irradiation conditions have been varied through long-term operation, there is necessity for evaluating numerical values of PV(Photovoltaic) system performance to observe the overall effect of environmental conditions on their operation characteristics. This paper presents performance monitoring results and analysis on component perspective(PV array and power conditioning system) and global perspective(yield, losses) of PV system for one year monitoring periods.

태양광 모듈 출력 보상을 위한 마이크로컨버터 시제품 동작 특성 분석 (Characteristics Analysis of Proto-type Microconverter for Power Output Compensation of Photovoltaic Modules)

  • 김지현;김주희;이정준;박종성;김창헌
    • Current Photovoltaic Research
    • /
    • 제10권4호
    • /
    • pp.133-137
    • /
    • 2022
  • The economic feasibility of a photovoltaic (PV) system is greatly influenced by the initial investment cost for system installation. Also, electricity generation by PV system is highly important. The profits competitiveness of PV system will be maximized through intelligent operation and maintenance (O&M). Here, we developed a microconverter which can maximize electricity generation from PV modules by tracking the maximum power point of PV modules, and help efficient O&M. Also, the microconverter mitigates current mismatch caused by shading, hence maximize power generation. The microconverters were installed PV modules and demonstrated through the field tests. Power outputs such as voltage, string current were measured with variuos weather environments and partial shadings. We found that PV modules with the microconvertors shows 12.05% higher power generation compared to the reference PV modules.

PV모듈의 음영 상태 및 바이패스 다이오드 단락 고장 특성 분석 (The Characteristics of PV module under the Partial Shading Condition and with a Failure of Bypass Diode with Short)

  • 고석환;주영철;소정훈;황혜미;정영석;강기환
    • 한국태양에너지학회 논문집
    • /
    • 제36권4호
    • /
    • pp.41-47
    • /
    • 2016
  • A bypass diode is connected in parallel to solar cells with opposite polarity. The advantage of using the bypass diode is circumvented a destructive efforts of hot-spot heating in the photovoltaic(PV) module. In addition, it is possible to reduce a energy loss under the partial shading on the PV module. This paper presents a characteristic of photovoltaic module under partial shading condition and with defective bypass diode by using the experimental data. The results of field testing for each photovoltaic modules, when photovoltaic system which is connected power grid is operating, the inner junction-box temperature of shading photovoltaic module is high $5^{\circ}C$ because of difference of flowing current through into bypass diode. And incase of not operating photovoltaic system, the inner junction-box temperature of module with defective bypass diode is greatly higher than partial shading PV module.

비동일한 방위각에 의한 PV모듈의 발전성능 (Performance of Photovoltaic Module according to Non-Uniform Azimuth)

  • 김현일;박경은;이기옥;강기환;유권종;서승직
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 추계학술발표대회 논문집
    • /
    • pp.303-308
    • /
    • 2009
  • In 2008, the global photovoltaic(PV) market reached 5.6GW and the cumulative PV power installed totalled almost 15GW compared to 9GW in 2007. Due to a favourable feed-in-tariff, Korea emerged in 2008 as the 4th largest PV market worldwide. PV power installation rose 495.5 percent to 268MW in 2008 compare to 45MW in 2007. However many PV systems are not installed in suitable part which is concerned about geometrical factor. It is generally recognized that the actual output of PV system in field is a function of orientation, tilt angle, irradiance, temperature, soiling and various system-related losses. Thus this paper shows that a experimental result of PV modules(A group) with uniform azimuth angle and PV modules(B group) with non-uniform azimuth angle. As a result, the electrical output of B group is decreased 48.8% as compared with electrical output of A group.

  • PDF