• Title/Summary/Keyword: Photovoltaic (PV) inverter

Search Result 247, Processing Time 0.027 seconds

Analysis of IEC 61727 Photovoltaic (PV) systems Characteristics of the utility interface

  • Lee, Jeong Hyeon;Yoon, Yong Ho;Kim, Jae Moon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.2
    • /
    • pp.90-95
    • /
    • 2015
  • This paper describes IEC 61727 standard of Photovoltaic (PV) systems -Characteristics of the utility interface. IEC 61727 standard tests include utility compatibility and personnel safety and equipment protection of PV inverter performance functions. Especially utility compatibility part includes test items of 1) voltage, current and frequency, 2) normal voltage operating range, 3) flicker, 4) DC injection, 5) normal frequency operating range, 6) harmonics and 7) waveform distortion, 8) power factor of PV inverter. Also personnel safety and equipment protection part includes test items 1)loss of utility voltage, 2)over/under voltage and frequency, 3)Islanding protection, 4)response to utility recovery, 5)earthing, 6)short circuit protection, 7)Isolation and switching of PV inverter. In this paper, each item of IEC 61727 standard test is studied and analyzed and finally full tested by PV inverter performance function.

Performance Test of an Integrated Electronic Protection Device Based Photovoltaic Inverter (지능형 보호기기 적용 태양광 인버터 성능시험)

  • Kim, Eung-Sang;Kim, Seul-Ki;Jeon, Jin-Hong;Ahn, Jong-Bo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1744-1750
    • /
    • 2007
  • This paper addresses grid interconnection tests of a 3kW transformer-less photovoltaic (PV) inverter to verify the effectiveness of the PV inverter and promote its wide use. The 3kW transformer-less PV inverter, which was equipped with intelligent protection and control system, was manufactured. A hardware test bed was constructed for performance tests of the PV inverter. Control performance and grid protection tests were carried out using the test bed. Test results verify the performance of the power control and grid protection functions of the developed transformer-less PV inverter.

Comparison of Leakage Current in Various Photovoltaic Inverter Topologies (태양광 인버터 회로구조에 따른 누설전류 비교)

  • Yoon, Hanjong;Cho, Younghoon;Choe, Gyu-ha
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.105-106
    • /
    • 2016
  • In low-power grid-connected photovoltaic(PV) system, Single-phase transformerless full-bridge inverter is commonly used. However in transformerless photovoltaic application, the ground parasitic capacitance created by grounding between PV panels and ground. This ground parasitic capacitance inject additional current into the inverter, these currents cause electromagnetic interference problem, safety problem and harmonics problem in PV applications. In order to eliminate the ground current, This paper propose various inverter topologies in PV applications. These proposed inverter topologies are verified through simulation using PSIM.

  • PDF

Bi-directional Photovoltaic Inverter with High Efficiency and Low Noise (고 효율, 저 잡음 특성을 가지는 양방향 태양광 인버터)

  • Lee, Sung-Ho;Kwon, Jung-Min;Kwon, Bong-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.539-545
    • /
    • 2012
  • Due to merits cost and efficiency, the transformer-less type photovoltaic (PV) inverters have been popularized in the solar market. However, the leakage current flowing through a parasitic capacitor between PV array and ground can cause adverse effect in the transformer-less PV system. In this paper, a bi-directional PV inverter with high efficiency and low noise is proposed for the PV system with an energy storage device. The proposed inverter is a transformer-less type and performs the bi-directional power control between dc sources and grid with high efficiency. In addition, the proposed inverter can suppress the leakage current and obtain low noise characteristic. Finally, 3-kW prototype was implemented to confirm validity of the proposed inverter.

Grid-Connected Photovoltaic System Based on a Cascaded H-Bridge Inverter

  • Rezaei, Mohammad-Ali;Iman-Eini, Hossein;Farhangi, Shahrokh
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.578-586
    • /
    • 2012
  • In this paper a single-phase Cascaded H-Bridge (CHB) inverter for photovoltaic (PV) applications is presented. Based on the presented mathematical analysis, a novel controller is introduced which adjusts the inverter power factor (PF) and manipulates the distribution of the reactive power between the cells to enhance the operating range of the CHB inverter. The adopted control strategy enables tracking of the maximum power point (MPP) of distinct PV strings and allows independent control of the dc-link voltages. The proposed controller also enables the inverter to operate under heavily unbalanced PV conditions. The performance of the CHB inverter and the proposed controllers are evaluated in the PSCAD/EMTDC environment. A seven-level CHB-based grid connected laboratory prototype is also utilized to verify the system performance.

Cascaded H-Bridge Five Level Inverter for Grid Connected PV System using PID Controller

  • Sivagamasundari, M.S.;Mary, P. Melba
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.4
    • /
    • pp.451-462
    • /
    • 2016
  • Photovoltaic energy conversion becomes main focus of many researches due to its promising potential as source for future electricity and has many advantages than the other alternative energy sources like wind, solar, ocean, biomass, geothermal etc. In Photovoltaic power generation multilevel inverters play a vital role in power conversion. The three different topologies, diode-clamped (neutral-point clamped) inverter, capacitor-clamped (flying capacitor) inverter and cascaded h-bridge multilevel inverter are widely used in these multilevel inverters. Among the three topologies, cascaded h-bridge multilevel inverter is more suitable for photovoltaic applications since each pv array can act as a separate dc source for each h-bridge module. This paper presents a single phase Cascaded H-bridge five level inverter for grid-connected photovoltaic application using sinusoidal pulse width modulation technique. This inverter output voltage waveform reduces the harmonics in the generated current and the filtering effort at the input. The control strategy allows the independent control of each dc-link voltages and tracks the maximum power point of PV strings. This topology can inject to the grid sinusoidal input currents with unity power factor and achieves low harmonic distortion. A PID control algorithm is implemented in Arm Processor LPC2148. The validity of the proposed inverter is verified through simulation and is implemented in a single phase 100W prototype. The results of hardware are compared with simulation results. The proposed system offers improved performance over conventional three level inverter in terms of THD.

Transformer-Less Single-Phase Four-Level Inverter for PV System Applications

  • Yousofi-Darmian, Saeed;Barakati, Seyed Masoud
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1233-1242
    • /
    • 2014
  • A new inverter topology for single-phase photovoltaic (PV) systems is proposed in this study. The proposed inverter offers a four-level voltage in its output terminals. This feature results in easier filtering in comparison with other conventional two-level or three-level inverters. In addition, the proposed four-level inverter (PFLI) has a transformer-less topology, which decreases the size, weight, and cost of the entire system and increases the overall efficiency of the system. Although the inverter is transformer-less, it produces a negligible leakage ground current (LGC), which makes this inverter suitable for PV grid-connected applications. The performance of the proposed inverter is compared with that of a four-level neutral point clamped inverter (FLNPCI). Theoretical analysis and computer simulations verify that the PFLI topology is superior to FLNPCI in terms of efficiency and suitability for use in PV transformer-less systems.

A New Solar Energy Conversion System Implemented Using Single Phase Inverter (단상 인버터를 이용한 새로운 태양광 에너지 변환 시스템 구현)

  • Kim, Sil-Keun;Hong, Soon-Ill
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.7
    • /
    • pp.74-80
    • /
    • 2006
  • This paper describes a solar energy conversion strategy is applied to grid-connected single phase inverter by the maximum power point of conversion strategy. The maximum power point of tracking is controlled output power of PV(photovoltaic)modules, based on generated circuit control MOSFET switch of two boost converter for a connected single phase inverter with four IGBT's switch in full bridge. The generation control circuit allows each photovoltaic module to operate independently at peak capacity, simply by detecting of the output power of PV module. Furthermore, the generation control circuit attenuates low-frequency ripple voltage. which is caused by the full-bridge inverter, across the photovoltaic modules. The effectiveness of the proposed inverter system is confirmed experimentally and by means of simulation.

High-Efficiency Power Conditioning System for Grid-Connected Photovoltaic Modules

  • Choi, Woo-Young;Choi, Jae-Yeon
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.561-567
    • /
    • 2011
  • This paper presents a high-efficiency power conditioning system (PCS) for grid-connected photovoltaic (PV) modules. The proposed PCS consists of a step-up DC-DC converter and a single-phase DC-AC inverter for the grid-connected PV modules. A soft-switching step-up DC-DC converter is proposed to generate a high DC-link voltage from the low PV module voltage with a high-efficiency. A DC-link voltage controller is presented for constant DC-link voltage regulation. A half-bridge inverter is used for the single-phase DC-AC inverter for grid connection. A grid current controller is suggested to supply PV electrical power to the power grid with a unity power factor. Experimental results are obtained from a 180 W grid-connected PV module system using the proposed PCS. The proposed PCS achieves a high power efficiency of 93.0 % with an unity power factor for a 60 Hz / 120 Vrms AC power grid.

A Modified Single-Phase Transformerless Z-Source Photovoltaic Grid-Connected Inverter

  • Liu, Hongpeng;Liu, Guihua;Ran, Yan;Wang, Gaolin;Wang, Wei;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1217-1226
    • /
    • 2015
  • In a grid-connected photovoltaic (PV) system, the traditional Z-source inverter uses a low frequency transformer to ensure galvanic isolation between the grid and the PV system. In order to combine the advantages of both Z-source inverters and transformerless PV inverters, this paper presents a modified single-phase transformerless Z-source PV grid-connected inverter and a corresponding PWM strategy to eliminate the ground leakage current. By utilizing two reversed-biased diodes, the path for the leakage current is blocked during the shoot-through state. Meanwhile, by turning off an additional switch, the PV array is decoupled from the grid during the freewheeling state. In this paper, the operation principle, PWM strategy and common-mode (CM) characteristic of the modified transformerless Z-source inverter are illustrated. Furthermore, the influence of the junction capacitances of the power switches is analyzed in detail. The total losses of the main electrical components are evaluated and compared. Finally, a theoretical analysis is presented and corroborated by experimental results from a 1-kW laboratory prototype.