• Title/Summary/Keyword: Photosynthesis Rate

Search Result 464, Processing Time 0.026 seconds

Elucidation of the physiological basis related to high photosynthetic capacity of soybean local variety, 'Peking'.

  • Sakoda, Kazuma;Suzuki, Seita;Tanaka, Yu;Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.239-239
    • /
    • 2017
  • The enhancement of leaf photosynthetic capacity can have the potential to improve the seed yield of soybean. Key targets for the increase of leaf photosynthetic capacity remains unclear in soybean. Peking, Chinese local variety, has been the useful material for soybean breeding since it shows various resistances against biotic and abiotic stress. Sakoda et al., 2017 reported that Peking had the higher capacity of leaf photosynthesis than Enrei, Japanese elite cultivar. They identified the genetic factors related to high photosynthetic capacity of Peking. The objective of this study is to elucidate the physiological basis underlying high photosynthetic capacity of Peking. Peking and Enrei were cultivated at the experimental field of the Graduate School of Agriculture, Kyoto University, Kyoto, Japan. The sowing date was July 4, 2016. Gas exchange parameters were evaluated at the uppermost fully expanded leaves on 43, 49, and 59 days after planting (DAP) with a portable gas exchange system, LI-6400. The leaf hydraulic conductance, $K_{leaf}$, was determined based on the water potential and transpiration rate of the uppermost fully expanded leaves on 60 DAP. The morphological traits related to leaf photosynthesis were analyzed at the same leaves with the gas exchange measurements. The light-saturated $CO_2$ assimilation rate ($A_{sat}$) of Peking was significantly higher than that of Enrei at 43 and 59 DAP while the stomatal conductance ($g_s$) of Peking was significantly higher at all the measurements (p < 0.05). It suggested that high $A_{sat}$ was mainly attributed to high $g_s$ in Peking. $g_s$ is reported to be affected by the morphological traits and water status inside the leaf, represented by $K_{leaf}$, in crop plants. The tendency of the variation of the stomatal density between two cultivars was not consistent throughout the measurements. On the other hand, $K_{leaf}$ of Peking was 59.0% higher than that of Enrei on 60 DAP. These results imply that high $g_s$ might be attributed to high $K_{leaf}$ in Peking. Further research is needed to reveal the mechanism to archive high $g_s$ on the basis of water physiology in Peking. The knowledge combining the genetic and physiological basis underlying high photosynthetic capacity of Peking can be useful to improve the biomass productivity of soybean.

  • PDF

Effect of Phosphorus Stress on Photosynthesis and Nitrogen Fixation of Soybean Plant under $CO_2$ Enrichment (대기 $CO_2$ 상승시 인산공급이 식물체의 광합성 및 질소고정에 미치는 영향)

  • Sa, Tong-Min
    • Applied Biological Chemistry
    • /
    • v.40 no.2
    • /
    • pp.134-138
    • /
    • 1997
  • The objective of this study was to examine the effect of phosphorus deficiency on nitrogen fixation and photosynthesis of nitrogen fixing soybean plant under $CO_2$ enrichment condition. The soybean plants(Glycine max [L.] Merr.) inoculated with Bradyrhizobium japonicum MN 110 were grown with P-stressed(0.05 mM-P) and control(1 mM-P) treatment under control$(400\;{\mu}l/L\;CO_2)$ and enrichment$(800\;{\mu}l/L\;CO_2)$ enviromental condition in the phytotron equipped with high density lamp$(1000\;{\mu}Em^{-2}S^{-1})$ and $28/22^{\circ}C$ temperature cycle for 35 days after transplanting(DAT). At 35 DAT, phosphorus deficiency decreased total dry mass by 64% in $CO_2$ enrichment condition, and 51% in control $CO_2$ condition. Total leaf area was reduced significantly by phosphorus deficiency in control and enriched $CO_2$ condition but specific leaf weight was increased by P deficiency. Phosphorus deficiency significantly reduced photosynthetic rate(carbon exchange rate) and internal $CO_2$ concentration in leaf in both $CO_2$ treatments, but the degree of stress was more severe under $CO_2$ enrichment condition than under control $CO_2$ environmental condition. In phosphorus sufficient plants, $CO_2$ enrichment increased nodule fresh weight and total nitrogenase activity(acetylene reduction) of nodule by 30% and 41% respectively, but specific nitrogenase activity of nodule and nodule fresh weight was not affected by $CO_2$ enrichment in phosphorus deficient plant at 35 DAT. Total nitrogen concentrations in stem, root and nodule tissue were significantly higher in phosphorus sufficient plant grown under $CO_2$ enrichment, but nitrogen concentration in leaf was reduced by 30% under $CO_2$ enrichment. These results indicate that increasing $CO_2$ concentration does not affect plant growth under phosphorus deficient condition and phosphorus stress might inhibit carbohydrate utilization in whole plant and that $CO_2$ enrichment could not increase nodule formation and functioning under phosphorus deficient conditions and phosphorus has more important roles in nodule growth and functioning under $CO_2$ enrichment environments than under ambient condition.

  • PDF

Growth, Yield and Photosynthesis of Introduced Kenaf Cultivars in Korea (신도입 케나프 품종의 파종시기에 빠른 생육 및 수량 변동과 광합성 특성)

  • 강시용;김판기;강영길;강봉균;유장걸;류기중;송희섭
    • Korean Journal of Plant Resources
    • /
    • v.17 no.2
    • /
    • pp.139-146
    • /
    • 2004
  • Kenaf (Hibiscus cannabinus L.), an annual plant of the family Malvaceae, is considered to be the most promising for alternative plants with potential use as a non-wood fiber source. The objectives of this study were to select the optimum seeding date and adaptable cultivar among newly introduced kenaf cultivars (Everglades-41, Tainung-2 and Chingpi-3) in Jeju island, and to clarify the photosynthetic characteristics of those cultivars. Among the three cultivars, the fresh shoot weight per unit area of Chingpi-3 at harvest season showed highest through all seeding dates, that of while Everglades-41 was the lowest. The difference of shoot yield at harvest mainly due to seedling stand rate and plant number per unit area among the cultivars. The Chingpi-3 showed the highest shoot fresh weight in the seeding date of May 11 and decreased trend in the late seeding dates. Net photosynthesis rate was higher on Everglades-41 with entire type leaf than other two cultivars with palmate type leaf. The activity of ribulose-1,5-bisphosphate carboxylase/foxygenase (rubisco) estimated from the A-Ci curve showed highest in Chingpi-3 among three cultivars. These results suggest that Chingpi-3 might be adaptable cultivar with seeding date of around May 10 for kenaf production in Jeiu island.

Effects of Overall Shading and Partial Shading on the Response of Chlorophyll Fluorescence of Soybean (전면적차광과 부분차광이 콩 엽록소 형광 반응에 미치는 영향)

  • Cho, Yuna;Jo, Euni;Jeong, Jae-Hyeok;Yoon, Changyong;An, Kyunam;Cho, Jaeil
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.3
    • /
    • pp.163-168
    • /
    • 2021
  • The growth experiment under shading condition has been performed to understand the eco-physiological responses of crops to light in terms of photosynthesis. There are two types of shading: overall shading and partial shading. In this study, the chlorophyll fluorescence of soybean was observed under the overall shading of the box made by polyresin and the partial shading at agrivoltaic system. The overall shading condition during vegetative growth induced lower SPAD and Electron transport rate (ETR). These lower values recovered after removal of shading box. However, the Non-photochemical fluorescence quenching (NPQ) became lower under overall shading and higher under partial shading. Such increase in NPQ limited crop photosynthesis even though the ETR was almost same to the control without shading treatment. Under the condition of partial shading, the values of SP AD and ETR for soybean did not change. However, the NPQ was higher than control condition. This suggests that the crop photosynthesis under both types of shading would be decreased by different eco-physiological processes which are the lower ETR in overall shading and the higher NP Q in partial shading despite the reduced light under shading conditions.

Effects of Artificial Water Treatment on Chlorophyll Contents and Photosynthetic Characteristics in Fraxinus rhynchophylla and Fraxinus mandshurica Seedlings (인위적인 수분처리에 의한 물푸레나무와 들메나무의 엽록소 함량 및 광합성에 미치는 영향)

  • Lee, Soo-Won;Choi, Jeong-Ho;Chung, Jin-Chul;Kwon, Ki-Won;Yoo, Se-Kuel;Bae, Jong-Hyang
    • Journal of Bio-Environment Control
    • /
    • v.17 no.2
    • /
    • pp.101-109
    • /
    • 2008
  • The content of chlorophyll a, b have generally increased for Fraxinus rhynchophylla and Fraxinus mandshuricain the order of month of June B>C and >D. Therefore we suppose the photosynthesis rate will increase if the moisture level is high and in regardless of the growth stage.

Effect of Soil Water Potential on Stomatal Conductance and Photosynthesis of Wasabia japonica Matsum (토양수분(土壤水分)포텐셜이 고추냉이의 기공전도도(氣孔傳導度)와 광합성(光合成)에 미치는 영향(影響))

  • Choi, Sun-Young;Lee, Kang-Soo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.4 no.4
    • /
    • pp.288-293
    • /
    • 1996
  • This study was investigated to obtain basic information for the development of irrigation plans in upland cultivation of Wasabi. Changes of stomatal conductivity and photosynthetic rate of Wasabi, and of the soil water potential during withholding watering were analysed. The stomatal conductivity of Wasabi at $1000{\mu}Em^{-2}s^{-1}$ light intensity was $70mmolem^{-2}s^{-1}$, which was about 49% lower than that of Chinese cabbage, $138mmolem^{-2}s^{-1}$. The temporal changes of light intensity during the daytime did not influence the stomatal conductivity. The soil water potential that decreased stomatal conductivity in Wasabi was about - 50kPa at 10 AM, and about - 30kPa at 3 PM. The photosynthetic rate of Wasabi at$1000{\mu}Em^{-2}s^{-1}$ light intensity was $7.6mgdm^{-2}hr^{-1}$, which was about 50% lower than that of Chinese cabbage, $15.3mgdm^{-2}hr^{-1}$. The duration required for a stable photosynthetic rate was longer in Wasabi than in Chinese cabbage. The soil water potential that decreased photosynthetic rate in Wasabi was about - 50kPa at 10 AM, and about - 30kPa at 3 PM. The stomatal conductivity and photosynthetic rate showed significant positive correlation at various soil water potential. The results indicated that irrigation in wasabi could be done during the daytime when the soil water potential is above - 30kPa, which does not decrease stomatal conductivity and photosynthesis in Wasabi.

  • PDF

Effect of Light Transmittance Control on the Growth Status of Aerial Parts during the Growing Season of Panax ginseng (생육시기별 광량조절이 인삼의 지상부 생육에 미치는 영향)

  • Cheon, Seong-Ki;Lee, Tae-Su;Yoon, Jong-Hyuk;Lee, Sung-Sik
    • Journal of Ginseng Research
    • /
    • v.27 no.4
    • /
    • pp.202-206
    • /
    • 2003
  • This study was conducted to compare the growth status of aerial parts, photosynthesis and microclimate between fixing light transmittance (Control) and changing light transmittance (C.L.T.) during ginseng growing seasons. Control showed 8% light transmittance rate during growing seasons. But C.L.T. showed 18% light transmittance rate during early (April-June) and late growth stage (September-October) and 6% light transmittance rate middle growth stage(July-August). Air temperature, leaking water rate and soil water content of C.L.T. was higher than those of control during early and late growth stage. But Air temperature, leaking water rate and soil water content of C.L.T was lower than those of control during middle growth stage C.L.T. exhibited superiority in survival ratio, stem diameter, stem length, L.A.I. and stem angle compared to control. Chlorophyll content of C.L.T. was lower than that of control but S.L.W., stomatal opening and photosynthetic rates of C.L.T. was higher than those of control. Also Alternaria blight disease and defoliation of C.L.T. was lower than those of control.

The Effects of Fertilization on Growth Performances and Physiological Characteristics of Liriodendron tulipifera in a Container Nursery System (시비 처리가 백합나무 용기묘의 생장 및 생리적 특성에 미치는 영향)

  • Cho, Min Seok;Lee, Soo Won;Park, Byung Bae;Park, Gwan Su
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.2
    • /
    • pp.305-313
    • /
    • 2011
  • Fertilization is essential to seedling production in nursery culture, but excessive fertilization can contaminate surface and ground water around the nursery. The objective of this study was to find optimal fertilization practice of container seedling production for reducing soil and water contamination around the nursery without compromising seedling quality. This study was conducted to investigate growth performance, photosynthesis, chlorophyll fluorescence, and chlorophyll contents of Liriodendron tulipifera growing under three different fertilization treatments (Constant rate, Three-stage rate, and Exponential rate fertilization). Root collar diameter, height, and biomass of L. tulipifera were the highest at Constant treatment. Like growth performance, seedling quality index (SQI) were higher at Constant than at other treatments, but not significantly different among treatments. L. tulipifera showed good photosynthetic capacity at all treatments. Photochemical efficiency and chlorophyll contents were significantly lower at Exponential than at other treatments. Therefore, Exponential fertilization which is 50% fertilizer of other treatments would maximize seedling growth and minimize nutrient loss.

Changes in Photosynthetic Rate and Protein Content in the Leaf during the Senescence of Tobacco Plant (Nicotiana tabacum L) (담배의 노화과정 중 광합성 및 단백질 함량의 변화)

  • Lee, Sang-Gak;Shim, Sang-In;Kang, Byeung-Hoa
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.17 no.1
    • /
    • pp.20-26
    • /
    • 1995
  • This study was carried out to obtain the basic data which include the change of the photosynthetic rate and protein content according to growth stage in the process of senescence of tobacco plant The photosynthetic rate was the maximum with 26.31$\mu$mol.CO2/m2.sec and stomatal resistance was the minimum with 0.2552cm/sec at 15th days after leaf emergence. However, after 50 days the photosynthesis was very little occurred. During leaf developments the number of chloroplast was increased and reached at the maximum at 25th days after emergence of leaf, thereafter, it was decreased gradually. The content of protein increased continuously and showed the highest value at 15th days after leaf emergence. The degradation rate of soluble protein was more rapid than that of insoluble protein at early stage of senescence. The range of decrement in the insoluble protein was low at late stage of senescence. The content of Rubisco, the key enzyme of photoamthesis, corresponded to about 50% of soluble protein and reached to the maximum at 150 days after leaf emergence. As the senescence progressed, the content of large subunit(UV) of Rubisco showed a tendency to decrease more rapidly than that of small subunit(SSU). The total amount of amino acids was the highest at 15th days after leaf emergence.

  • PDF

Studies on the Sambucus silliamsii var. coreana Nakai for Landscape use (야생딱총나무(Sambucus williamsii var. coreana Nakai)의 조경식목 화를 위한 기초 연구)

  • 김정미;박용진;이기훤
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.21 no.1
    • /
    • pp.139-148
    • /
    • 1993
  • The present experiments have been conducted to find out the plant's growth environments habitate, mode of life, characteristic of photosynthesis, habit of growth and propagation. The results of this study are as follows: 1. Sambucus williamsii var. Coreana distributes around all sides of native site without having any relation to altitude, inclination and direction. 2. In the native site, Robinia pseudo - acacia and its neighboring species were Prunus yedoensis, Acer pseudo-sieboldianum, Lindera obtusiloba and Staphylea bumalda. From 21 to 41 types of species were located in the vegetation of the quadrat area. 3. According to the variation of leaf temperature with the result of the change of net photosynthetic rate, the optimum temperature for growth is $25^{\circ}C$. 4. The rooted rate of vegetative propagation was the highest at 100ppm IBA plot and the lowest at 200ppm BA plot. 5. The rooted rates of Sambucus williamsii var. coreana in perlite 50% bed, vermiculite bed and peatmoss 50%+sand 50% bed are higher than others.

  • PDF