DOI QR코드

DOI QR Code

Effects of Overall Shading and Partial Shading on the Response of Chlorophyll Fluorescence of Soybean

전면적차광과 부분차광이 콩 엽록소 형광 반응에 미치는 영향

  • Cho, Yuna (Department of Applied Plant Science, Chonnam National University) ;
  • Jo, Euni (Department of Applied Plant Science, Chonnam National University) ;
  • Jeong, Jae-Hyeok (National Institute of Crop Science, Rural Development Administration) ;
  • Yoon, Changyong (Jeollanam-do Agricultural Research & Extension Services) ;
  • An, Kyunam (Jeollanam-do Agricultural Research & Extension Services) ;
  • Cho, Jaeil (Department of Applied Plant Science, Chonnam National University)
  • 조유나 (전남대학교 농업생명과학대학 응용식물학과) ;
  • 조은이 (전남대학교 농업생명과학대학 응용식물학과) ;
  • 정재혁 (국립식량과학원 작물재배생리과) ;
  • 윤창용 (전남농업기술원 식량작물연구소) ;
  • 안규남 (전남농업기술원 식량작물연구소) ;
  • 조재일 (전남대학교 농업생명과학대학 응용식물학과)
  • Received : 2021.09.17
  • Accepted : 2021.09.29
  • Published : 2021.09.30

Abstract

The growth experiment under shading condition has been performed to understand the eco-physiological responses of crops to light in terms of photosynthesis. There are two types of shading: overall shading and partial shading. In this study, the chlorophyll fluorescence of soybean was observed under the overall shading of the box made by polyresin and the partial shading at agrivoltaic system. The overall shading condition during vegetative growth induced lower SPAD and Electron transport rate (ETR). These lower values recovered after removal of shading box. However, the Non-photochemical fluorescence quenching (NPQ) became lower under overall shading and higher under partial shading. Such increase in NPQ limited crop photosynthesis even though the ETR was almost same to the control without shading treatment. Under the condition of partial shading, the values of SP AD and ETR for soybean did not change. However, the NPQ was higher than control condition. This suggests that the crop photosynthesis under both types of shading would be decreased by different eco-physiological processes which are the lower ETR in overall shading and the higher NP Q in partial shading despite the reduced light under shading conditions.

광은 식물 광합성에 반드시 요구되는 에너지이다. 차광의 종류를 전면차광과 부분차광으로 구분하고, 각각의 차광 조건에서 생육한 콩의 엽록소 형광을 관측하여 광합성능을 평가하였다. 전면차광에서는 SPAD값으로 대표되는 엽록소 농도와 광이용효율을 표현하는 ETR (Electron Transport Rate)이 크게 낮아졌다. 차광 박스 제거 후에 SPAD와 ETR 모두 대조구와 같은 정도가 되었으나, 열 소산 기작을 나타내는 NPQ (Non-Photochemical fluorescence Quenching)는 높아졌다. 이렇게 전면차광을 겪었던 콩의 광이용효율은 회복했지만, 높아진 NPQ가 광인산화 효율을 떨어뜨리므로 실제 노지 광합성량은 필연적으로 낮아질 것이다. 부분 차광에서도 SPAD와 ETR이 대조구와 큰 차이를 보이지 않았으나, NPQ는 높은 모습을 보였다. 따라서, 도시 농업 또는 영농형 태양광과 같은 부분차광 조건의 광합 성량은 단순히 작물의 광이용효율과 누적 광 에너지량으로 계산한 추정값보다 작을 것으로 예상된다.

Keywords

Acknowledgement

이 논문은 농촌진흥청 공동연구사업(과제번호: PJ015103052021)의 지원을 받았으며, 이에 감사드립니다.

References

  1. An, K., C. Yoon, S. Shin, S. Kim, and J. Cho, 2021: Characteristics of paddy rice by planting density under agrophotovoltaic module structure. Proceeding of the Korean Solar Energy Society of Conference, 175pp.
  2. Cho, Y., H. Kim, E. Jo, D. Oh, H. Jeong, C. Yoon, K. An, and J. Cho, 2021: Effect of partial shading by agrivoltaic systems panel on electron transport rate and non-photochemical quenching of crop. Korean Journal of Agriculture and Forest Meteorology 23(2), 100-107. (in Korean with English abstract)
  3. Gardner, Frank P., R. Brent Pearce, and Roger L. Mitchell, 2017: Physiology of Crop Plants. Scientific publishers, 19pp.
  4. Han, H., and J. Ryoo, 1988: Effects of shading on growth and dry matter accumulation of corn and sorghum species I. Effect of shading on photosynthetic rate. Journal of the Korean Society of Grassland Science 8(1), 61-65. (in Korean with English abstract)
  5. Hirose, T., and M. J. A. Werger, 1987: Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy. Oecologia 72(4), 502-526. https://doi.org/10.1007/BF00378974
  6. Kim, H., S. Jee, J. Kim, M. Kang, S. Yun, M. Kim, J. Kim, Y. Lee, J. Son, G. Song, H. Jeon, and J. Chung, 2020: Rice and electric power production by adjusting the module angle of grid-connected agro-photovoltaic plant. Proceedings of the Korean Society of Crop Science Conference, 91pp.
  7. Kim, K., S. Kim, B. Huh, and K. Yoon, 1991: Effects of shading at heading stage on yield components in rice. Journal of Korean Society of Crop Science 36(2), 127-133. (in Korean with English abstract)
  8. Murchie, E. H., and K. K. Niyogi, 2011: Manipulation of photoprotection to improve plant photosynthesis. Plant Physiology 155(1), 86-92. https://doi.org/10.1104/pp.110.168831
  9. Sin, P., W. Sang, J. G. Baek, Y. H. Lee, D. W. Gwon, J. H. Kim, J. I. Jo, and M. C. Seo, 2019: Effects of shading on growth and yield components of soybean at different growth stages. Proceedings of the Korean Society of Crop Science Conference, 129pp.
  10. The Society for the Study of Species Biology (SSSB), 2003: Introduction to Plant Physiological Ecology. Hiroyuki, M. and K. Naoki (Eds.), Bun-ichi Sogo Shuppan Co, 252-253.
  11. Xiong, D., J. Chen, T. Yu, W. Gao, X. Ling, Y. Li, S. Peng, and J. Huang, 2015: SPAD-based leaf nitrogen estimation is impacted by environmental factors and crop leaf characteristics. Scientific report 5(1), 1-12.
  12. Yoon, C., S. Choi, K. N. An, J. H. Ryu, H. Jeong, and J. Cho, 2019: Preliminary experiment of the change of insolation under solar panel mimic shading net. Korean Journal of Agricultural and Forest Meteorology 21(4), 358-365. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2019.21.4.358