• Title/Summary/Keyword: Photosynthesis Rate

Search Result 468, Processing Time 0.032 seconds

Changes of Rutin Content and Photosynthesis Rate of Korean Buckwheat Cultivars under Various Environmental Stresses

  • Yoon, Byeong-Sung;Kwun, Hyok-Oun;Shin, Sang-Eun;Jin, Cheng-Wu;Yu, Chang-Yeon;Cho, Dong-Ha
    • Korean Journal of Medicinal Crop Science
    • /
    • v.11 no.4
    • /
    • pp.284-288
    • /
    • 2003
  • This study was conducted to classify photosynthesis rate and changes of rutin content of Korean buckwheat (cv. Chunchon-jaerae and Yangjeul-memil) treated with salinity, UV-C and low temperature. In case of cv. Chunchon-jaerae and Yangjeul-memil, according to the salt stress, transpiration rate, stomatal conductance and photosynthesis rate were decreased. Both cultivars also showed decrease of transpiration rate and photosynthesis rate under the UV-C. Rutin contents within leaf and stem of cv. Yangjeul-memil were decreased when NaCl concentration was high. Rutin contents within leaf and stem of cv. Yangjeul-memil were generally decreased when the time laps under the UV-C stress. Rutin contents within leaf and stem of cv. Chunchon-jaerae was also generally decreased when the time laps under the low temperature stress.

Photosynthesis and Respiration (P&R) Analyzer Analysis Optimization for Microalgal Activity Evaluation (미세조류 활성도 평가를 위한 Photosynthesis and Respiration (P&R) Analyzer 분석조건 최적화)

  • Huh, Jae-Hee;Sim, Tae-Suk;Hwang, Sun-Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.6
    • /
    • pp.449-457
    • /
    • 2021
  • Photosynthesis and respiration rate of microalgae are important factors during advanced wastewater treatment research using microalgae, There are several equipments and measurement methods for measuring photosynthesis and respiration, with different challenges that occur during pretreatment and stabilization of the analysis process. Therefore, in this study, for accurate Photosynthesis and Respiration (P&R) analyzer measurement, the analysis process was divided into pre-processing, DO stabilization, and analysis stages and each was optimized to enable accurate evaluation. For this purpose, the effect of DO saturation of the sample on P&R analysis, DO stabilization according to the degassing flow rate, and photoinhibition of the OD level on photosynthesis was investigated. Based on our study results, when DO was supersaturated, photosynthetic efficiency decreased due to photorespiration, making it inappropriate as a P&R sample. In addition, 0.5 L-N2/min level was the optimal nitrogen degassing flow rate for DO desaturation. The inhibition of photosynthetic efficiency by self-shading caused by the increase in OD was observed from OD 2.0, and it was found that P& R analysis is preferably performed on samples with OD less than 2.0. In addition, based on the above three optimization results, an optimized P&R Analyzer instruction for accurate P&R analysis was also presented.

Studies on the Leaf Photosynthesis of Salt-Stressed Rice Cultivars (염류처리에 따른 벼의 개엽광합성에 관한 연구)

  • 조동하
    • Korean Journal of Plant Resources
    • /
    • v.7 no.1
    • /
    • pp.97-101
    • /
    • 1994
  • The effects of NaCl salinity on the leaf photosynthesis and water relation of two cultivars of rice(Oryza sativa L.) , the salt-tolerant cultivar Seohae and the salt-senstive cultivar Iri-380 were exam-ined. Two cultivars of rice were grown for 14 days in nutrient solution at SOmM NaCl. Comparing theieaf Na content of two cultlvars, Seohae showed high accumulation of Na content in the leaf blade, while Iri-380 showed low. The Na content in leaf blade reduced the rate of leaf photosynthesis. Salt-tolerant cultivar Seohae was less decreased the rate of leaf photosynthesis than salt- sensitive cultivarIri-380. And Seohae showed larger decreased the osmotic potential in the leaves than Iri-380. This in-dicates that in the salt-tolerant cultivar, osmotic adjustment is developed under saliniEation.

  • PDF

Studies on the Photosynthesis of Korean Ginseng III. Effects of the Light Transparent Rate of Shading on the Photosynthesis Ability of Korean Ginseng Plant (Panax ginseng C. A. Meyer) (고려인삼엽의 광합성능력에 관한 연구 III. 투광율이 광합성 능력에 미치는 영향)

  • 조재성;원준연;목성균
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.4
    • /
    • pp.408-415
    • /
    • 1986
  • This study was conducted to define the effects of light transparent rate of the shading on the photosynthesis ability of the ginseng leaves and their seasonal changes. Regardless the effects of light transparent rate of shading and age of ginseng plant, 10,000 lux was the most adequate light intensity for the maximum photosynthesis of ginseng leaves and seasonal difference was not significant. The ginseng plants which were grown under 10 to 15 percent light transparent shading showed the highest photosynthesis ability. The photosynthesis ability of ginseng leaves was significantly decreased in September than June and the decreasing rate was higher at the ginseng plants planted on back rows than front rows. In June, the ginseng plants grown under 10 to 15 percent light transparent shading showed high respiration amount but in September, those grown under 20 to 25% light transparent shading showed the highest respiration. The amount of chlorophyll of ginseng leaf was significantly decreased by increasing light transparent rate of shading.

  • PDF

Photoacclimation strategies of the temperate coralline alga Corallina officinalis: a perspective on photosynthesis, calcification, photosynthetic pigment contents and growth

  • Kim, Ju-Hyoung;Lam, Sao Mai N.;Kim, Kwang Young
    • ALGAE
    • /
    • v.28 no.4
    • /
    • pp.355-363
    • /
    • 2013
  • The coralline alga, Corallina officinalis, is a widely distributed intertidal species in temperate coastal regions. It is usually exposed to high fluctuations of light intensity, light quality, temperature, and desiccation, all of which affect the temporal and spatial distribution as well as the morphology and the metabolism of this alga. In laboratory experiments we examined the effects of different light intensities (50, 100, and 200 ${\mu}mol$ photons $m^{-2}s^{-1}$) on photosynthesis, calcification, photosynthetic pigment contents (chlorophyll a and carotenoids), and growth rate of C. officinalis to clarify its photoacclimation strategies. Net photosynthesis, calcification and dissolution rates based on weight were not sensitive to irradiance. Although, photosynthesis and calcification did not clearly respond to light intensity, photosynthetic pigment contents were significantly lower at higher light intensities. In addition, higher irradiances induced significant enhancement of gross photosynthesis based on chlorophyll a. As a result, the specific growth rate was significantly stimulated by high light intensity. Our results suggest that photoacclimation of C. officinalis to different light conditions may be regulated to optimize growth.

Effects of Light Inensity and Quality on the Growth and Quality of Korean Ginseng (Panax ginseng C.A. Meyer) I. Effects of Light Intensity on the Growth and Yield of Ginseng Plants (광량 및 광질이 고려인삼의 생육과 품질에 미치는 영향 I. 광량이 인삼생육 및 수량에 미치는 영향)

  • 천성기;목성균
    • Journal of Ginseng Research
    • /
    • v.15 no.1
    • /
    • pp.21-30
    • /
    • 1991
  • This study was conducted to know the elects of light intensity of polyethylene net shading on the growth status, photosynthesis and root yield of ginseng plants. Polyethylene net shading of loft transmittance was the best one among light intensities of polyethylene net used in view of photosynthesis and decreasing of early leaf defoliation. According to increase of light intensity under the shading chlorophyll contents of ginseng leaves were decreased. As it was increased over 2 mg/g Photosynthesis and total saponin of leaves showed on the decrease remarkably. The rate of alternaria blight of ginseng plants showed the positive correlation between light intensity and leaking rate. The shading of 10% transmittance in root yield was increased by 40% in 6-year-old ginseng plant as compared with common straw shading, due to decreased missing plant and increased root weight.

  • PDF

Characteristics of Photosynthesis and Dry Matter Production of Liriope platyphylla $W_{ANG}\;et\;T_{ANG}$ (차광처리에 의한 맥문동의 광합성 및 물질 생산 특성)

  • Won, Jun-Yeon;Lee, Chung-Yeol
    • Korean Journal of Medicinal Crop Science
    • /
    • v.10 no.2
    • /
    • pp.82-87
    • /
    • 2002
  • This study was conducted to investigate the influence of shading treatment on the photosynthetic rate, transpiration rate, stomatal conductance and its any correlations in Liriope platyphylla $W_{ANG}\;et\;T_{ANG}$. Followings were achieved as a conclusion. The net photosynthetic rate was increased as the PAR was increased and reached maximum at the $700-1000{\mu}mol/m^2/s$ of PAR in all of leaves, also this treatment caused a higher net photosynthetic rate in comparison with control. It shows the tendency of increasing stomatal conductance caused by the increment of PAR. The diurnal changes of photosynthesis, transpiration rate and stomatal conductance were increased as the PAR was increased in the morning, but they indicated a decreased tendency in broad day. The relationship between net photosynthetic rate and stomatal conductance is well fit by the first regression linear equation. However, the values obtained from the linear equation have the different, respectively, and have highly significance. From the above results, net photosynthetic rate of shading treatment is higher than control in the same stomatal conductance. Different first regression linear equation were obtained between the transpiration rate and stomatal conductance, photosynthesis and stomatal conductance in during the control and shading treatment, too.

Effects of Shading on Growth and Dry Matter Accumulation of Corn and Sorghum Species I. Effecs of shang on photosynthetic rate (차광정도가 옥수수와 수수속 작물의 생육 및 건물축적에 미치는영향 I. 광합성량에 미치는 차광의 영향)

  • 한흥전;류종원
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.8 no.1
    • /
    • pp.61-65
    • /
    • 1988
  • To examine the effects of light intensity on photosynthesis, corn and sorghum species were grown under shade cloths, which reduced light intensity by 25,50 and 75%. Photosynthetic rates were measured between 10 a.m. to noon on a clear day in early and mid - summer. 1. The degree of shading had a little effect on microenvironment. Air, soil and leaf temperatures were reduced as shade increased. 2. The degree of shading in early summer had relatively a little effect on photosynthesis of corn. However, the rates of photosynthesis in mid-summer decreased by 36%, 55% with relative light intensities of 50% and 25%, respectively. 3. The rate of photosynthesis was highly correlated with light intensity. The rates of photosynthesis with relative light intensities of 75,50 and 25% were decreased by 20, 40 and 5 4% in early summer, and by 17-53%, 36-64% and 5570% in mid-summer, respectively. 4. The 75% of light intensity had relatively little effect on dry matter yield of corn and sorghum species, however dry matter yield with 50 and 25% relative light intensities was decreased 17 and 36% in corn, 13-3 1 and 50-68% in sorghum species, respectively.

  • PDF

Growth Characteristics and Removal Effect of Nitrogen and Phosphoric Acid of Iris pseudoacorus at Waterway Soils of Mangyeong River (만경강 하천토양에서 노랑꽃창포의 생장특성과 질소·인 제거효과)

  • Seo, Byungsoo;Choi, Sumin;Park, Woojin;Park, Chongmin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.5
    • /
    • pp.57-65
    • /
    • 2004
  • This study was carried out to measure the growth and photosynthesis of Iris pseudoacorus, the reduction rate of nitrogen(T-N) and phosphoric acid($P_2O_5$) from soils, and the increase rate of two substance into plants which cultivated at waterway soils of different concentration of two substance. The results are summarized as follows; 1. The contents of nitrogen and phosphoric acid at waterway soils of Mangyeong river showed the highest level in the around Samrye railway bridge where was located in the downstream and sewage of stock raising flowed in 2. The Iris pseudoacorus which cultivated at waterway soils showed the leaf and root growth of 43~50 and 9~13cm, respectively. And the growth was higher in the waterway soils contained high level of nitrogen The rate of photosynthesis was $3.5-5.9{\mu}mol\;m^{-2}s^{-1}$ ranges and this rate increased from the end of June to August and then decreased. The rate of photosynthesis was higher in waterway soils contained high nitrogen regardless of seasons. 4. The Iris pseudoacorus removed nitrogen and phosphoric acid from waterway soils about 19~21% and 13~15%, respectively. The Iris pseudoacorus was effective to remove nitrogen more than phosphoric acid. And the waterway soil which included high concentration of two substance showed highly removal 5. The results of Iris pseudoacorus vegetation in the waterway soils showed that nitrogen and phosphoric acid of inside plant increased with 0.2-1.0% and 0.01-0.10% ranges, respectively. The contents of nitrogen and phosphoric acid in plants were increase in the soils of higher contents of nitrogen and phosphoric acid, and the rate of increase of nitrogen and phosphoric acid was higher at roots than leaves.

Alteration of Gas Exchange in Rice Leaves Infected with Magnaporthe grisea

  • Yun, Sung-Chul;Kim, Pan-Gi;Park, Eun-Woo
    • The Plant Pathology Journal
    • /
    • v.16 no.5
    • /
    • pp.257-263
    • /
    • 2000
  • Infection with rice blast fungus (Magnaporthe grisea) significantly reduced foliar net photosynthesis (A) of rice cultivars: Ilpoom, Hwasung, and Choochung in greenhouse experiments. By measuring the amount of diseased leaf area with a computer image analysis system, the relation between disease severity (DS) and net photosynthetic rate was curvilinearly correlated (r=0.679). Diseased leaves with 35% blast symptom can be predicted to have a 50% reduction of photosynthesis. The disease severity was linearly correlated (r=0.478) with total chlorophyll (chlorophyll a and chlorophyll b) per unit leaf area(TC). Light use efficiency was reduced by the fungal infection according to the light response curves. However, dark respiration (Rd) did not change after the fungal infection (p=0.526). Since the percent of reduction in photosynthesis greatly exceeded the percent of leaf area covered by blast lesions, loss of photosynthetic tissue on an area basis could not by itself account for the reduced photosynthesis. Quantitative photosynthetic reduction can be partially explained by decreasing TC, but cannot be explained by decreasing Rd. By photosynthesis (A)-internal CO$_2$ concentration (C$_i$ curve analysis, it was suggested that the fungal infection reduced ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity, ribulose-1,5-bisphosphate (RuBP) regeneration, and inorganic phosphate regeneration. Thus, the reduction of photosynthesis by blast infection was associated with decreased TC and biochemical capacity, which comprises all carbon metabolism after CO$_2$ enters through the stomata.

  • PDF