DOI QR코드

DOI QR Code

Photoacclimation strategies of the temperate coralline alga Corallina officinalis: a perspective on photosynthesis, calcification, photosynthetic pigment contents and growth

  • Kim, Ju-Hyoung (Department of Oceanography, Chonnam National University) ;
  • Lam, Sao Mai N. (Department of Oceanography, Chonnam National University) ;
  • Kim, Kwang Young (Department of Oceanography, Chonnam National University)
  • Received : 2013.08.15
  • Accepted : 2013.11.11
  • Published : 2013.12.15

Abstract

The coralline alga, Corallina officinalis, is a widely distributed intertidal species in temperate coastal regions. It is usually exposed to high fluctuations of light intensity, light quality, temperature, and desiccation, all of which affect the temporal and spatial distribution as well as the morphology and the metabolism of this alga. In laboratory experiments we examined the effects of different light intensities (50, 100, and 200 ${\mu}mol$ photons $m^{-2}s^{-1}$) on photosynthesis, calcification, photosynthetic pigment contents (chlorophyll a and carotenoids), and growth rate of C. officinalis to clarify its photoacclimation strategies. Net photosynthesis, calcification and dissolution rates based on weight were not sensitive to irradiance. Although, photosynthesis and calcification did not clearly respond to light intensity, photosynthetic pigment contents were significantly lower at higher light intensities. In addition, higher irradiances induced significant enhancement of gross photosynthesis based on chlorophyll a. As a result, the specific growth rate was significantly stimulated by high light intensity. Our results suggest that photoacclimation of C. officinalis to different light conditions may be regulated to optimize growth.

Keywords

References

  1. Adey, W. H. & Macintyre, I. G. 1973. Crustose coralline algae: a re-evaluation in the geological science. Geol. Soc. Am. Bull. 84:883-904. https://doi.org/10.1130/0016-7606(1973)84<883:CCAARI>2.0.CO;2
  2. Aguilera, J., Bischof, K., Karsten, U., Hanelt, D. & Wiencke, C. 2002. Seasonal variation in ecophysiological patterns in macroalgae from an Arctic fjord. II. Pigment accumulation and biochemical defense systems against high light stress. Mar. Biol. 140:1087-1095. https://doi.org/10.1007/s00227-002-0792-y
  3. Antia, N. J., McAllister, C. D., Parsons, T. R., Stephens, K. & Strickland, J. D. H. 1963. Further measurements of primary production using a large-volume plastic sphere. Limnol. Oceanogr. 8:166-183. https://doi.org/10.4319/lo.1963.8.2.0166
  4. Borowitzka, M. A. 1977. Algal calcification. Oceanogr. Mar. Biol. 15:189-223.
  5. Borowitzka, M. A. 1981. Photosynthesis and calcification in the articulated coralline red algae Amphiroa anceps and A. foliacea. Mar. Biol. 62:17-23. https://doi.org/10.1007/BF00396947
  6. Chisholm, J. R. M. 2000. Calcification by crustose coralline algae on the northern Great Barrier Reef, Australia. Limnol. Oceanogr. 45:1476-1484. https://doi.org/10.4319/lo.2000.45.7.1476
  7. El Haikali, B., Bensoussan, N., Romano, J. -C. & Bousquet, V. 2004. Estimation of photosynthesis and calcification rates of Corallina elongata Ellis and Solander, 1786, by measurements of dissolved oxygen, pH and total alkalinity. Sci. Mar. 68:45-56. https://doi.org/10.3989/scimar.2004.68n145
  8. Figueiredo, M. A. de O., Kain (Jones), J. M. & Norton, T. A. 2000. Responses of crustose corallines to epiphyte and canopy cover. J. Phycol. 36:17-24.
  9. Freiwald, A. & Henrich, R. 1994. Reefal coralline algal build-ups within the Arctic Circle: morphology and sedimentary dynamics under extreme environmental seasonality. Sedimentology 41:963-984. https://doi.org/10.1111/j.1365-3091.1994.tb01435.x
  10. Garbary, D. J., Galway, M. E., Lord, C. E. & Gunawardena, A. N. 2013. Programmed cell death in multicellular algae. In Heimann, K. & Katsaros, C. (Eds.) Advances in Algal Cell Biology. De Gruyter, Berlin, pp. 1-19.
  11. Goreau, T. F. 1963. Calcium carbonate deposition by coralline algae and corals in relation to their roles as reef-builders. Ann. N. Y. Acad. Sci. 109:127-167.
  12. Häder, D. -P., Herrmann, H., Schäfer, J. & Santas, R. 1996. Photosynthetic fluorescence induction and oxygen production in Corallinacean algae measured on site. Bot. Acta 109:285-291. https://doi.org/10.1111/j.1438-8677.1996.tb00575.x
  13. Hader, D. -P., Lebert, M., Flores-Moya, A., Jimenez, C., Mercado, J., Salles, S., Aguilera, J. & Figuero, F. L. 1997. Effects of solar radiation on the photosynthetic activity of the red alga Corallina elongata Ellis et Soland. J. Photochem. Photobiol. B, Biol. 37:196-202. https://doi.org/10.1016/S1011-1344(96)07402-7
  14. Hernandez-Ayon, J. M., Belli, S. L. & Zirino, A. 1999. pH, alkalinity and total $CO_2$ in coastal seawater by potentiometric titration with a difference derivative readout. Anal. Chim. Acta 394:101-108. https://doi.org/10.1016/S0003-2670(99)00207-X
  15. Irving, A. D., Connell, S. D. & Elsdon, T. S. 2004. Effects of kelp canopies on bleaching and photosynthetic activity of encrusting coralline algae. J. Exp. Mar. Biol. Ecol. 310:1-12. https://doi.org/10.1016/j.jembe.2004.03.020
  16. Irving, A. D., Connell, S. D., Johnston, E. L., Pile, A. J. & Gillanders, B. M. 2005. The response of encrusting coralline algae to canopy loss: an independent test of predictions on an Antarctic coast. Mar. Biol. 147:1075-1083. https://doi.org/10.1007/s00227-005-0007-4
  17. Ivlev, A. A. & Dubinsky, Y. A. 2011. On the nature of the light-induced component of dark respiration of plants. Biophysics 56:679-686. https://doi.org/10.1134/S0006350911040099
  18. Kuhl, M., Glud, R. N., Borum, J., Roberts, R. & Rysgaard, S. 2001. Photosynthetic performance of surface-associated algae below sea ice as measured with a pulse-amplitude-modulated (PAM) fluorometer and $O_2$ microsensors. Mar. Ecol. Prog. Ser. 223:1-14. https://doi.org/10.3354/meps223001
  19. Larkum, A. W. D., Koch, E. -M. W. & Kuhl, M. 2003. Diffusive boundary layers and photosynthesis of the epilithic altosynthetic gal community of coral reefs. Mar. Biol. 142:1073-1082. https://doi.org/10.1007/s00227-003-1022-y
  20. Lawson, G. W. 1966. The littoral ecology of West Africa. Oceanogr. Mar. Biol. Ann. Rev. 4:405-448.
  21. Lewis, J. B. 1977. Processes of organic production on coral reefs. Biol. Rev. 52:305-347.
  22. Littler, M. M., Littler, D. S., Blair, S. M. & Norris, J. N. 1985. Deepest known plant life discovered on an uncharted seamount. Science 227:57-59. https://doi.org/10.1126/science.227.4682.57
  23. Martin, S., Castets, M. -D. & Clavier, J. 2006. Primary production, respiration and calcification of the temperate freeliving coralline alga Lithothamnion corallioides. Aquat. Bot. 85:121-128. https://doi.org/10.1016/j.aquabot.2006.02.005
  24. Marubini, F., Barnett, H., Langdon, C. & Atkinson, M. J. 2001. Dependence of calcification on light and carbonate ion concentration for the hermatypic coral Porites compressa. Mar. Ecol. Prog. Ser. 220:153-162. https://doi.org/10.3354/meps220153
  25. Millero, F. J., Zhang, J. -Z., Lee, K. & Campbell, D. M. 1993. Titration alkalinity of seawater. Mar. Chem. 44:153-165. https://doi.org/10.1016/0304-4203(93)90200-8
  26. Morse, J. W., Arvidson, R. S. & Luttge, A. 2007. Calcium carbonate formation and dissolution. Chem. Rev. 107:342-381. https://doi.org/10.1021/cr050358j
  27. Noisette, F., Duong, G., Six, C., Davoult, D. & Martin, S. 2013a. Effects of elevated $pCO_2$ on the metabolism of a temperate rhodolith Lithothamnion corallioides grown under different temperatures. J. Phycol. 49:746-757. https://doi.org/10.1111/jpy.12085
  28. Noisette, F., Egilsdottir, H., Davoult, D. & Martin, S. 2013b. Physiological responses of three temperate coralline algae from contrasting habitats to near-future ocean acidification. J. Exp. Mar. Biol. Ecol. 448:179-187. https://doi.org/10.1016/j.jembe.2013.07.006
  29. Olaizola, M. & Duerr, E. O. 1990. Effects of light intensity and quality on the growth rate and photosynthetic pigment content of Spirulina platensis. J. Appl. Phycol. 2:97-104. https://doi.org/10.1007/BF00023370
  30. Payri, C. E., Maritorena, S., Bizeau, C. & Rodiere, M. 2001. Photoacclimation in the tropical coralline alga Hydrolithon onkodes (Rhodophyta, Corallinaceae) from a French Polynesian reef. J. Phycol. 37:223-234. https://doi.org/10.1046/j.1529-8817.2001.037002223.x
  31. Pentecost, A. 1978. Calcification and photosynthesis in Corallina officinalis L. using $^{14}CO_2$ method. Br. Phycol. J. 13:383-390. https://doi.org/10.1080/00071617800650431
  32. Roberts, R. D., Kuhl, M., Glud, R. N. & Rysgaard, S. 2002. Primary production of crustose coralline red algae in a high arctic fjord. J. Phycol. 38:273-283. https://doi.org/10.1046/j.1529-8817.2002.01104.x
  33. Smith, L. M., Silver, C. M. & Oviatt, C. A. 2012. Quantifying variation in water column photosynthetic quotient with changing field conditions in Narragansett Bay, RI, USA. J. Plankton Res. 34:437-442. https://doi.org/10.1093/plankt/fbs011
  34. Smith, S. V. 1978. Alkalinity depletion to estimate the calcification of coral reefs in flowing waters. In Stoddart, D. R. & Johannes, R. E. (Eds.) Coral Reefs: Research Methods. Monographs on Oceanographic Methodology 5, UNESCO, Paris, pp. 397-404.
  35. Smith, S. V. & Key, G. S. 1975. Carbon dioxide and metabolism in marine environments. Limnol. Oceanogr. 20:493-495. https://doi.org/10.4319/lo.1975.20.3.0493
  36. Steneck, R. S. 1986. The ecology of coralline algae crusts:convergent patterns and adaptive strategies. Annu. Rev. Ecol. Syst. 17:273-303. https://doi.org/10.1146/annurev.es.17.110186.001421
  37. Webster, N. S., Uthicke, S., Botté, E. S., Flores, F. & Negri, A. P. 2013. Ocean acidification reduces induction of coral settlement by crustose coralline algae. Global Change Biol. 19:303-315. https://doi.org/10.1111/gcb.12008
  38. Wellburn, A. R. 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 144:307-313. https://doi.org/10.1016/S0176-1617(11)81192-2
  39. Wilson, S., Blake, C., Berges, J. A. & Maggs, C. A. 2004. Environmental tolerances of free-living coralline algae (maerl): implications for European marine conservation. Biol. Conserv. 120:279-289. https://doi.org/10.1016/j.biocon.2004.03.001

Cited by

  1. Evaluation of carbon flux in vegetative bay based on ecosystem production and CO2exchange driven by coastal autotrophs vol.30, pp.2, 2015, https://doi.org/10.4490/algae.2015.30.2.121
  2. An experimental investigation of Stichococcus sp. cultivation conditions for optimal co-production of carbohydrates, proteins and lipids following a biorefinery concept vol.89, 2016, https://doi.org/10.1016/j.biombioe.2016.01.009
  3. The carbon turnover response to thermal stress of a dominant coralline alga on the fast warming Levant coast vol.61, pp.3, 2016, https://doi.org/10.1002/lno.10279
  4. Adaptations of a green tide formingUlva linza(Ulvophyceae, Chlorophyta) to selected salinity and nutrients conditions mimicking representative environments in the Yellow Sea vol.55, pp.2, 2016, https://doi.org/10.2216/15-67.1
  5. Species-specific responses of temperate macroalgae with different photosynthetic strategies to ocean acidification: a mesocosm study vol.31, pp.3, 2016, https://doi.org/10.4490/algae.2016.31.8.20
  6. (Corallinales, Rhodophyta) across the NE Atlantic vol.53, pp.3, 2018, https://doi.org/10.1080/09670262.2018.1442586
  7. (Corallinales, Rhodophyta) vol.57, pp.3, 2018, https://doi.org/10.2216/17-71.1
  8. Diverse responses of sporophytic photochemical efficiency and gametophytic growth for two edible kelps, Saccharina japonica and Undaria pinnatifida, to ocean acidification and warming vol.142, pp.None, 2019, https://doi.org/10.1016/j.marpolbul.2019.03.063
  9. Reduced physiological performance in a free-living coralline alga induced by salmon faeces deposition vol.13, pp.None, 2013, https://doi.org/10.3354/aei00403
  10. Variation in Photosynthetic Performance Relative to Thallus Microhabitat Heterogeneity in Lithothamnion australe (Rhodophyta, Corallinales) Rhodoliths vol.57, pp.1, 2013, https://doi.org/10.1111/jpy.13080
  11. Physiology of maerl algae: Comparison of inter‐ and intraspecies variations vol.57, pp.3, 2013, https://doi.org/10.1111/jpy.13119
  12. Recruitment of crustose coralline algae on tiles material for monitoring coral larvae settlement’s consolidators at Nature Reserve Pulau Sempu, East Java, Indonesia vol.83, pp.None, 2023, https://doi.org/10.1590/1519-6984.245922