• Title/Summary/Keyword: Photophysical

Search Result 101, Processing Time 0.03 seconds

Sensitized Near IR Luminescence of Er(Ⅲ) Ion in Lanthanide Complexes Based on Diketone Derivatives: Synthesis and Photophysical Behaviors

  • Baek, Nam-Seob;Kwak, Bong-Kyu;Kim, Yong-Hee;Kim, Hwan-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1256-1260
    • /
    • 2007
  • Two β-diketone derivatives bearing triphenylene (1-naphthalene-2-yl-3-triphenylen-2-yl-propane-1,3-dione (NTPD)) and naphthalene (1,3-di-naphthalene-2-yl-propane-1,3-dione (DNPD)) and their Ln(III) complexes (Ln = Er or Gd) were synthesized and their photophysical properties were investigated. The sensitized emission of Er3+ ion in Er3+-[NTPD]3(terpy) and Er3+-[DNPD]3(terpy) was observed upon excitation at absorption maximum of ligands. Their photophysical studies indicate the sensitization of Er3+ luminescence by energy transfer through the excited triplet state of β-diketone ligand. The energy transfer rate through the excited triplet state of β-diketone ligand to Er3+ ion occurs faster than that of the oxygen quenching rate.

Effect of Deuterated Solvents on the Excited State Photophysical Properties of Curcumin

  • Barik, A.;Goel, N.K.;Priyadarsini, K.I.;Mohan, Hari
    • Journal of Photoscience
    • /
    • v.11 no.3
    • /
    • pp.95-99
    • /
    • 2004
  • Optical absorption and emission studies have been carried out to understand the effect of deuterium on the solvent dependent photophysical properties of curcumin in deuterated solvents such as $CDCl_3,\;(CD_3)_2SO,\;(CD_3)_2CO,\;CD_3OD\;and\;CD_3CN$. Optical absorption spectral studies showed that there is no significant shift in absorption maxima compared to the non-deuterated solvent. The fluorescence maxima shows significant shift with polarity of solvent but not much affected by the deuteration. The fluorescence quantum yield of curcumin increased marginally in almost all the deuterated solvents, indicating reduction in the non-radiative pathways. The fluorescence decay was biexponential in all the solvents and the average fluorescence lifetime was not much affected with deuteration, but showed decrease with increasing solvent polarity. Based on these studies, it is concluded that intermolecular hydrogen transfer is only partially responsible for the excited state deactivation of curcumin.

  • PDF

Spectral and Photophysical Behaviors of Curcumin and Curcuminoids

  • Bong, Pil Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.1
    • /
    • pp.81-86
    • /
    • 2000
  • In order to obtain detailed information on ground and excited states of curcumin and curcuminoids, as well as to understand the photobiological characteristics of them, their spectral and photophysical behaviors are investigated in various conditions. Various curcuminoids were obtained and their structures were determined by spectroscopic methods. In n-hexane, the absorption and fluorescence spectra of these compounds contain some structure, which disappear in more polar solvent such as methanol. The fluorescence intensities of curcumin and dimethylated curcumin decrease as the concentration of water increases. The intensities also decrease as the solvent varies from neutral to extremely acidic (lower than pH 1.5) or to basic (higher than pH 8.0) condition. These results indicate that the spectral and photophysical properties of both of curcumin and curcuminoids are strongly influenced by solvent, water, and pH.

Photophysical Efficiency Factors of Singlet Oxygen Generation from Core-modified Trithiasapphyrin Derivatives

  • Ha, Jeong-Hyon;Kim, Min-Sun;Park, Yong-Il;Ryu, Shin-Hyung;Park, Mi-Gnon;Shin, Koo;Kim, Yong-Rok
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.281-285
    • /
    • 2002
  • The photophysical properties and the singlet oxygen generation efficiencies of meso-tetraphenyl-trithiasapphyrin $(S_3TPS)$ and meso-tetmkis(p-methoxy phenyl)-trithiasapphy rin ((p-MeO)-$S_3TPS$) have been investigated, utilizing steady-state and time-resolved spectroscopic methods to elucidate the possibility of their use as photosensitizers for photodynamic therapy (PDT). The observed photophysical properties were compared with those of other porphyrin-like photosensitizers in geometrical and electronic structural aspects, such as extended ${\pi}$ conjugation, structural distortion, and internal heavy atoms. The steady-state electronic absorption and fluorescence spectra were both red-shifted due to the extended ${\pi}$-conjugation. The fluorescence quantum yields were measured as very small. Even though intersystem crossing rates were expected to increase due to the increment of spin orbital coupling, the triplet quantum yields were measured as less than 0.15. Such characteristics can be ascribed to the more enhanced internal conversion rates compared with the intersystem crossing rates. Furthermore, the triplet state lifetimes were shortened to -1.0 ${\mu}s$ as expected. Therefore, the singlet oxygen quantum yields were estimated to be near zero due to the fast triplet state decay rates and the inefficient energy transfer to the oxygen molecule as well as the low triplet quantum yields. The low efficiencies of energy transfer to the oxygen molecule can be attributed to the lower oxidation potential and/or the energetically low lying triplet state. Such photophysical factors should be carefully evaluated as potential photosensitizers that have extended ${\pi}$-conjugation and heavy core atoms synthesized for red-shifted absorption and high triplet state quantum yields.

Photophysical and Photochemical Property of ATX-S10

  • Ito, Toshiaki;Okazaki, Shigetoshi;Kageyama, Kazumi;Hirohata, Toru;Kohno, Eiji;Hirano, Toru
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.527-529
    • /
    • 2002
  • Photodynamic therapy (PDT) is a medical treatment using laser and photosensitizing drug taken up to destroy cancer cells. Singlet oxygen ($^1$0$_2$) generation is strongly related to this treatment. We have built a direct detection system monitoring feeble luminescence, in the near IR region, from $^1$0$_2$, We have comparatively studied the photophysical and photochemical properties in solution of a newly developed drug ATX-S10 and Photofrin already investigated clinically. We demonstrdted that ATX-S10 was capable of efficiently yielding $^1$0$_2$, which may lead to highly efficient PDT treatment. Successive laser excitation photobleached ATX -S10 readily in a dose-dependent manner. This result shows that ATX -S10 is useful in setting up suitable medical treatment conditions to minimize side effects.

  • PDF