• Title/Summary/Keyword: Photonic filter

Search Result 75, Processing Time 0.026 seconds

A Flexible and Tunable Microwave Photonic Filter Based on Adjustable Optical Frequency Comb Source

  • Tran, Thanh Tuan;Seo, Dongsun
    • Journal of IKEEE
    • /
    • v.19 no.1
    • /
    • pp.27-32
    • /
    • 2015
  • A flexible and tunable microwave photonic filter based on adjustable optical frequency comb source is demonstrated. We use a combination of a dual parallel Mach Zehnder modulator and an intensity modulator to generate fifteen comb lines with proper weights to implement a desired filter. The optical comb weights, corresponding to the tap coefficients of the filter, are flexibly changed by adjusting the operation parameters of the modulators. The achieved bandwidth and stopband attenuation of the tunable filter are 0.7 GHz and 20 dB, respectively. In addition, we overcome the undesired low frequency suppression appeared in a conventional scheme by applying a dual parallel Mach Zehnder modulator for single sideband suppressed carrier modulation.

X-band Microwave Photonic Filter Using Switch-based Fiber-Optic Delay Lines

  • Jung, Byung-Min
    • Current Optics and Photonics
    • /
    • v.2 no.1
    • /
    • pp.34-38
    • /
    • 2018
  • An X-band microwave photonic (MWP) filter using switch-based fiber-optic delay lines has been proposed and experimentally demonstrated. It is composed of two electro-optic modulators (EOMs) and $2{\times}2$ optical MEMS-switch-based fiber-optic delay lines. By changing time-delay difference and coefficients of each wavelength signal by using fiber-optic delay lines and an electro-optic modulator, respectively, a bandpass filter or a notch filter can be implemented. For an X-band MWP filter with four channel elements, fiber-optic delay lines with the unit time-delay of 50 ps have been experimentally realized and the frequency responses corresponding to the time-delays has been measured. The measured frequency response error at center frequency and the time-delay difference error were 180 MHz at 10 GHz and 3.2 ps, respectively, when the fiber-optic delay line has the time-delay difference of 50 ps.

Tunable Photonic Microwave Band-pass Filter with High-resolution Using XGM Effect of an RSOA

  • Kwon, Won-Bae;Lee, Chung Ghiu;Seo, Dongjun;Park, Chang-Soo
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.563-567
    • /
    • 2018
  • We propose and experimentally demonstrate a simple tunable photonic microwave band-pass filter with high resolution using a reflective semiconductor optical amplifier (RSOA) and an optical time-delay line. The RSOA is used as a gain medium for generating cross-gain modulation (XGM) effect as well as an optical source. The optical source provides narrow spectral width by self-injection locking the RSOA in conjunction with a partial reflection filter with specific center wavelength. Then, when the RSOA is operated in the saturation region and the modulated recursive signal is injected into the RSOA, the recursive signal is inversely copied to the injection locked optical source due to the XGM effect. Also, the tunability of the passband of the proposed microwave filter is shown by controlling an optical time-delay line in a recursive loop.

Microwave Photonic Filter Using Optical True-Time-Delay Line Matrix (광 실시간 지연선로 행렬을 이용하는 마이크로웨이브 포토닉 필터)

  • Jung, Byung-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.2
    • /
    • pp.213-217
    • /
    • 2015
  • Microwave Photonic(MWP) filters capable of use a bandpass filter or a notch filter with large bandwidth have been proposed. 4-lines${\times}$2-bit fiber-optic delay lines with a unit time-delay difference of 50 ps were experimentally realized. By changing the time-delay difference and the coefficients of microwave-modulated optical signals, the bandpass and notch filters were implemented and characterized.

Photonic Crystal Based Bandpass Filter Design for WDM Communication Systems (WDM 시스템에 적합한 광결정 대역 통과 필터 설계)

  • Park, Dong-Soo;Kim, Sang-In;Park, Ik-Mo;Lim, Han-Jo
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.3
    • /
    • pp.266-274
    • /
    • 2005
  • We have designed photonic crystal based bandpass filters whose characteristics are suitable for WDM communication system. The filters consist of coupled point defect resonators in two-dimensional photonic crystal. The frequency response of coupled resonators has been analyzed by the coupling of modes in time, from which the design parameters for the coupled resonator filters have been extracted. For the appropriate choice of the design parameters, each resonator is treated as a lumped L-C resonance circuit, and from the analogy between the equivalent circuit and the standard L-C filter circuits, the design parameters are simply determined from the table for general filter circuit design. Based on the determined design parameters, a photonic crystal based filter has been designed and its performance has been calculated using the finite-difference time-domain method. The designed filter shows a pass band of 50GHz and 0.5 dB in-band ripple, which is suitable for typical WDM communication systems with 100GHz channel spacing.

Design of Microstrip Line Bandpass Filter using Photonic Bandgap Structures (Photonic Bandgap 구조를 이용한 마이크로스트립 라인 대역통과 여파기 설계)

  • 김태일;김명기;박익모;임한조
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.4
    • /
    • pp.611-621
    • /
    • 2001
  • This paper presents a design methodology of bandpass filter by using defect modes in photonic bandgap (PBG) structures. PBG structures are realized with alternating section of microstrip line arranged in a periodical manner. A passband is created within the stopband of PBG structures with defect modes, which can be generated by changing the period of certain part of PBG structure. We also extract a simple equivalent circuit of a bandstop filter by using several LC sections.

  • PDF

Tunable Photonic Microwave Delay Line Filter Based on Fabry-Perot Laser Diode

  • Heo, Sang-Hu;Kim, Junsu;Lee, Chung Ghiu;Park, Chang-Soo
    • Current Optics and Photonics
    • /
    • v.2 no.1
    • /
    • pp.27-33
    • /
    • 2018
  • We report the physical implementation of a tunable photonic microwave delay line filter based on injection locking of a single Fabry-Perot laser diode (FP-LD) to a reflective semiconductor optical amplifier (RSOA). The laser generates equally spaced multiple wavelengths and a single tapped-delay line can be obtained with a dispersive single mode fiber. The filter frequency response depends on the wavelength spacing and can be tuned by the temperature of the FP-LD varying lasing wavelength. For amplitude control of the wavelengths, we use gain saturation of the RSOA and the offset between the peak wavelengths of the FP-LD and the RSOA to decrease the amplitude difference in the wavelengths. From the temperature change of total $15^{\circ}C$, the filter, consisting of four flat wavelengths and two wavelengths with slightly lower amplitudes on both sides, has shown tunability of about 390 MHz.

Reduction of viewing-angle dependent color shift in a reflective type cholesteric liquid crystal color filter

  • Jang, Won-Gun;Beom, Tae-Won;Cui, Hao;Park, Jong-Rak;Hwang, Seong-Jin;Lim, Young-Jin;Lee, Seung-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1656-1659
    • /
    • 2008
  • The reflective type color filter for the liquid crystal displays (LCD) was produced using cholesteric liquid crystal monomers whose phase is characterized by the unique optical features of selective reflection. Periodic micrometer scale hemi-spherical photoresist (PR) patterns were formed on glass substrates by thermal reflow method after photolithography. Cholesteric color filter films for red, green and blue light reflections were then produced and the viewing angle dependence was investigated and compared with that of reflected light on the non-patterned substrates.

  • PDF

Photonic K-Band Microwave Bandpass Filter with Electrically Controllable Transfer Characteristics Based on a Polymeric Ring Resonator (전기적으로 가변되는 전달특성을 갖는 폴리머 링 광공진기를 이용한 마이크로웨이브 대역통과 필터)

  • Kim, Gun-Duk;Lee, Sang-Shin
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.5
    • /
    • pp.475-479
    • /
    • 2006
  • An integrated photonic K-band microwave bandpass filter has been proposed and demonstrated by incorporating a polymeric ring resonator. Its transfer characteristics were adjusted by shilling the resonance wavelength of the ring resonator via the thermooptic effect. The achieved performance of the filter includes the center frequency of 20 GHz, the attenuation of ${\sim}15dB$, the bandwidth of 2 GHz, and the corresponding quality factor of 10. The microwave output power within the passband of the device was adjusted at the rate of about 6.7 dB/mW in the range of 27 dB. This kind of device with electrically controllable transfer characteristics can be applied to implement microwave switches and other devices.

Widely-Tunable Single-Notch Acousto-optic Filter using Two-mode Photonic Crystal Fiber (광자결정 이중모드 광섬유의 음향광학 필터 특성 연구)

  • Hong, Gi-Seok;Park, Hyeon-Cheol;Hwang, In-Gak;;;Yeom, Dong-Il;Kim, Byeong-Yun
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2008.07a
    • /
    • pp.139-140
    • /
    • 2008
  • We demonstrate a novel acousto-optic filter using a two-mode photonic crystal fiber. Thanks to endless two-mode operation of the fiber, single notch over a whole spectrum is obtained with tuning range of> 1000 nm.

  • PDF