Design of Microstrip Line Bandpass Filter using Photonic Bandgap Structures

Photonic Bandgap 구조를 이용한 마이크로스트립 라인 대역통과 여파기 설계

  • 김태일 (아주대학교 전자공학부) ;
  • 김명기 (아주대학교 전자공학부) ;
  • 박익모 (아주대학교 전자공학부) ;
  • 임한조 (아주대학교 분자기술학과 및 전자공학부)
  • Published : 2001.06.01

Abstract

This paper presents a design methodology of bandpass filter by using defect modes in photonic bandgap (PBG) structures. PBG structures are realized with alternating section of microstrip line arranged in a periodical manner. A passband is created within the stopband of PBG structures with defect modes, which can be generated by changing the period of certain part of PBG structure. We also extract a simple equivalent circuit of a bandstop filter by using several LC sections.

본 논문에서는 포토닉 밴드갭(PBG)의 결합모드(defect-mode)를 이용한 대역통과 여파기를 구현하는 방법에 대해 연구하였다. PBG 구조를 구현하기위하여 마이크로스트립 라인의폭을 달리하면 PBG 셀(cell)을 형성한 후, 이들 셀들을 주기적으로 배열하였으며, PBG 구조 일부분의 주기를 변화시킬 경우에 발생하는 결함모드를 이용하여 저지대역 내에서 통과대역을 구현하였다. 또한, 집중정수소자(Iumped-element)를 이용하여 PBG 구조의 등가회를 구현하였다.

Keywords

References

  1. Phys. Rev. Lett. v.58 no.20 Inhibited spontaneous emission in solid-state physics and electronics E. Yablanovich
  2. IEEE MTT-S Int. Microwave Symp. Dig. Broadband power amplifier integrated with slot antenna and novel harmonic tuning structure V. Radisic;Y. Qian;T. Itoh
  3. IEEE MTT-S Int. Microwave Symp. Dig. MM-wave tapered slot antenna on micromashined photonic bandgap dielectrics T. J. Ellis;G. M. Rebeiz
  4. IEEE Microwave Guided Wave Lett. v.8 no.11 A novel low-loss slow-wave microstrip structure F. R. Yang;Y. Qian;R. Coccioli;T. Itoh
  5. IEEE Microwave Guided Wave Lett. v.8 no.1 Broadband power amplifier using dielectric photonic bandgap structure V. Radisic;Y. Qian;T. Itoh
  6. J. Opt. Soc. Am. B. v.12 no.7 Guided and defect modes in periodic waveguides S. Fan;J. N. Winn;A. Devenyi;J. C. Chen;R. D. Meade;J. D. Joannopoulos
  7. IEEE J. of Lightwave Tech. v.14 no.11 Optical filters from photonic band gap air bridges J. C. Chen;H. A. Haus;S. Fan;P. R. Villeneuve;J. D. Joannopoulos
  8. Photonic Crystals J. D. Joannopoulos;R. D. Meade;J. N. Winn
  9. Phys. Rev. v.E59 no.4965 C. -S. Kee;J. -E. Kim;H. Y. Park;S. J. Kim;H. C. Song;Y. S. Kwon;N. H. Myung;S. Y. Shin;H. Lim
  10. IEEE Microwave Guided Wave Lett. v.8 no.2 Novel 2-D photonic bandgap structure for microstrip lines V. Radisic;Y. Qian;R. Coccioli;T. Itoh
  11. IEEE Microwave Guided Wave Lett. v.8 no.10 Photonic bandgap structure used as filters in microstrip circuits I. Rumsey;M. P-May;P. K. Kelly
  12. IEEE MTT-S Int. Microwave Symp. Dig. Finite element method for rigorous design of microwave devices using photonic bandgap structures B. Lenoir;D. Baillargeat;S. Verdeyme;P. Guillzon
  13. IEEE Trans. Microwave Theory Tech. v.46 no.11 Thin frequency-selective lattices integrated in novel compact MIC, MMIC, and PCA architecture H. Contopanagos;L. Zhang;N. G. Alexopoulos
  14. Appl. Phys. Lett. Duplexer using microwave photonic band gap structure S. -S. Oh;C. -S. Kee;J. -E. Kim;H. Y. Park;T. I. Kim;I. Park;H. Lim
  15. IEEE Trans. Microwave Theory Tech. v.42 no.9 Efficient modeling of power planes in computer packages using the finite difference time domain method R. Mittra;S. Chebolu;W. D. Becker
  16. IEEE Trans. Circuits Sys. I: Fundamental Theory and Applications v.43 no.2 The optimal transient simulation of distributed lines D. Kuznetsov;J. E. Schutt-Aine
  17. IEEE Trans. Microwave Theory Tech. v.43 no.12 Narrowband lumped-element microstrip filters using capacitively-loaded inductors D. Zhang;G. C. Liang;C. F. Shin;M. E. Johansson;R. S. Withers
  18. Proc. of Asia-Pacific Microwave Conf. v.3 Design of a 264 MHz superconductive thin film lumped element filter Y. Kobayashi;D. Yamaguchi;K. Saito;N. Sakakibara;Y. Ueno;S. Narahashi;T. Nojima