• Title/Summary/Keyword: Photonic band

Search Result 149, Processing Time 0.037 seconds

The Characteristic Study of Amorphous Chalcogenide As-Ge-Se-S Thin Film for Photonic Crystal Application (포토닉 크리스탈 응용을 위한 비정질 칼코게나이드 As-Ge-Se-S 박막의 특성 연구)

  • Nam, Ki-Hyun;Ju, Long-Yun;Choi, Hyuk;Chung, Hong-Bay
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.6
    • /
    • pp.580-583
    • /
    • 2008
  • In this paper, we investigated the properties of chalcogenide glass thin films formed by photo-inducing for use in 1-dimensional photonic crystals. We used Ag-doped amorphous As-Ge-Se-S thin films which belongs in the chalcogenide materials having sensitive photoluminescence properties. The purpose of this experiment is to form the holographic lattice for 1-dimensional photonic crystals. The way in which photo-induce into the amorphous chalcogenide thin films is holographic lithography method. We confirmed the formation of diffraction lattice by sensing the existence of diffraction beam and measured the diffraction efficiency. The results suggest that there is an application possibility with photonic crystals.

Well Defined One-Dimensional Photonic Crystal Templated by Rugate Porous Silicon

  • Lee, Sung Gi
    • Journal of Integrative Natural Science
    • /
    • v.6 no.3
    • /
    • pp.183-186
    • /
    • 2013
  • Well defined 1-dimentional (1-D) photonic crystals of polystyrene replicas have been successfully obtained by removing the porous silicon from the free-standing rugate porous silicon/phenylmethylpolysiloxane composite film. Rugate porous silicon was prepared by an electrochemical etching of silicon wafer in HF/ethanol mixture solution. Exfoliated rugate porous silicon was obtained by an electropolishing condition. A composite of rugate porous silicon/phenylmethylpolysiloxane composite film was prepared by casting a toluene solution of phenylmethylpolysiloxane onto the top of rugate porous silicon film. After the removal of the template by chemical dissolution, the phenylmethylpolysiloxane castings replicate the photonic features and the nanostructure of the master. The photonic phenylmethylpolysiloxane replicas are robust and flexible in ambient condition and exhibit an excellent reflectivity in their reflective spectra. The photonic band gaps of replicas are narrower than that of typical semiconductor quantum dots.

Preparation and Optical Characterization of Photonic Crystal Smart Dust Encoded with Reflection Resonance (반사공명으로 인코딩된 광결정 스마트 먼지의 제조방법 및 광학적 특징)

  • Lee, Boyeon;Hwang, Minwoo;Cho, Hyun;Kim, Hee-Cheol;Han, Jungmin
    • Journal of Integrative Natural Science
    • /
    • v.3 no.2
    • /
    • pp.84-88
    • /
    • 2010
  • Photonic crystals containing rugate structures from a single crystalline silicon wafer was obtained by using a sinoidal alternating current during an electrochemical etch procedure. Photonic crystals were isolated from the silicon substrate by applying an electropolishing current and were then made into particles by using an ultrasonic fracture in an ethanol solution to give a smart dust. Smart dusts exhibited their unique nanostructures and optical characteristics. They exhibited sharp photonic band gaps in the optical reflectivity spectrum. The size of smart dust obtained was in the range of 10-20 nm.

Applications of a Chirping and Tapering Technique on Photonic Band-Gap(PBG) Structures for Bandwidth Improvement

  • Tong Ming-Sze;Kim Hyeong-Seok;Chang Tae-Gyu
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.1
    • /
    • pp.43-47
    • /
    • 2005
  • Microwave or optical photonic band-gap(PBG) structures are conventionally realized by cascading distributive elements in a periodic pattern. However, the frequency bandwidth obtained through such plainly periodic arrangement is typically narrow, corporate with a relatively high rejection side-lobe band. To alleviate such problems, a design involving a chirping and tapering technique is hence introduced and employed. The design has been applied in both a planar stratified dielectric medium as well as a strip-line transmission line structure, and results are validated when compared with the corresponding conventional PBG structure.

Low-Phase Noise Dual-band VCO Using PBG Structure (Photonic Bandgap 구조를 이용한 저 위상잡음 듀얼밴드 VCO에 관한 연구)

  • 조용기;서철헌
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.2
    • /
    • pp.53-58
    • /
    • 2004
  • In this paper, the low-phase dual-band VCO, by adding switching circuit with PIN diode at feedback loop of the oscillation part having negative-resistance, is realized. In order to reduce the phase noise of the VCO, PBG structure applied to the ground plane of the resonator. When applying for PBG structure, output power is -9.17㏈m and phase noise is -102㏈c/Hz at 5.25㎓, output power is -5.17㏈m and phase noise is -101㏈c/Hz at 1.8㎓, respectively.

Dual-wide-band absorber of truncated-cone structure, based on metamaterial

  • Kim, Y.J.;Yoo, Y.J.;Rhee, J.Y.;Kim, K.W.;Park, S.Y.;Lee, Y.P.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.235.1-235.1
    • /
    • 2015
  • Artificially-engineered materials, whose electromagnetic properties are not available in nature, such as negative reflective index, are called metamaterials (MMs). Although many scientists have investigated MMs for negative-reflective-index properties at the beginning, their interests have been extended to many other fields comprising perfect lenses. Among various kinds of MMs, metamaterial absorbers (MM-As) mimic the blackbody through minimizing transmission and reflection. In order to maximize absorption, the real and the imaginary parts of the permittivity and permeability of MM-As should be adjusted to possess the same impedance as that of free space. We propose a dual-wide-band and polarization-independent MM-A. It is basically a triple-layer structure made of metal/dielectric multilayered truncated cones. The multilayered truncated cones are periodically arranged and play a role of meta-atoms. We realize not only a wide-band absorption, which utilizes the fundamental magnetic resonances, but also another wide-band absorption in the high-frequency range based on the third-harmonic resonances, in both simulation and experiment. In simulation, the absorption bands with absorption higher than 90% are 3.93 - 6.05 GHz and 11.64 - 14.55 GHz, while the experimental absorption bands are in 3.88 - 6.08 GHz and 9.95 - 13.84 GHz. The physical origins of these absorption bands are elucidated. Additionally, it is also polarization-independent because of its circularly symmetric structures. Our design is scalable to smaller size for the infrared and the visible ranges.

  • PDF

Ku-Band Sub-Harmonically Pumped Single Balanced Resistive Mixers with a Low Pass Filter Using Photonic Band Gap

  • Kim, Jae-Hyuk;Park, Hyun-Joo;Lee, Jong-Chul;Kim, Nam-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.4
    • /
    • pp.599-609
    • /
    • 2000
  • In this paper, sub-harmonically pumped single balanced resistive mixers are presented . Frequency bandwidth is selected for a Ku-band, which is 11.75-12.25GHz for RF, 5.375∼5.625 GHz for LO, and 1 GHz for IF signals. A rat-race hybrid is designed for the accomplishment of single balanced type. A low pass filter (LPF) with photonic band gap(PBG) structure is used for good conversion loss and unwanted harmonics suppression. Two types of mixers are suggested, which are one with no gate bias for no DC power consumption and the other with the IF amplifier for conversion gain. When a LO signal with the power of 6 dBm at 5.5 GHz is injected, a conversion loss of 12.17dB and a conversion gain of 7.83 dB are obtained for each mixer. For the both mixers , LO to RF isolation of 20 dB and LO to IF isolation of 60dB are obtained. With the RF power of -30dBm to -3dBm, the mixer shows linear characteristics region of IF. this mixer can be applied for Ku-band and other microwave communication systems.

  • PDF

Fabrication of Polymer Laser Device by Two-Photon Induced Photopolymerization Technique

  • Yokoyama, Shiyoshi;Nakahama, Tatsuo;Miki, Hideki
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.231-231
    • /
    • 2006
  • We fabricated a polymer sub-microstructure for optical device application by two-photon-induced laser lithography technique. Polymer pattern could be minimized as small as ${\sim}100\;nm$. The photopolymerization resin contains laser-dye, thus promising a high level of the optical gain. We utilized the lithography technique to the photonic crystal application, where the template of the two-dimensional photonic crystal was modified by polymer gain medium as defect-shape and line-shape orientations. Photonic band gap effect from polymer-doped photonic crystals is expected to exploit the application such as organic solid-state laser device.

  • PDF

Bandwidth Improvement for a Photonic Crystal Optical Y-splitter

  • Danaie, Mohammad;Kaatuzian, Hassan
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.283-288
    • /
    • 2011
  • In this study, a wide-band photonic crystal Y-splitter for TE modes is proposed. A triangular lattice of air holes etched in a GaAs slab is used as the platform. In order to numerically analyze the structures, plane wave expansion (PWE) and finite difference time domain (FDTD) methods are used. In comparison with the structures reported in the literature, the proposed topology has a less complexity while it provides more than 100nm bandwidth. The simplicity of the design, its high transmission ratio and its wide bandwidth makes it a suitable choice for the implementation of photonic crystal integrated circuits.